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1 SUMMARY 

The research reported here has the following objectives: 
• to inhibit an attacker’s ability to identify weaknesses in an application;
• to limit an attacker’s ability to exploit an identified weakness;
• to detect data that has been compromised by an attack;
• to repair compromised data.

The overall goal is to enhance an application’s ability to survive attacks during deployment, and 
thus to allow the system of which it is a component to continue operating (perhaps at a reduced 
level of performance). 

The research builds on technology from the field of automated software generation, in particular: 
• specification technology allows the formal statement of: (i) the objectives of an application,

and (ii) design and implementation techniques;
• automated refinement technology allows executable code to be generated from a

specification.
These technologies are used as follows: 
• Synthetic diversity: For any given application specification, there are numerous ways to

generate executable code, using alternative algorithms, alternative data type representations,
alternative run-time libraries, etc. Varying the generated code varies the details of how the
application represents its data, how it performs its computations, what resources it needs,
how it interacts with other software or network services, etc. Knowledge of such details is
critical for many forms of attack – varying them thus makes it harder for an attacker to
launch and sustain a successful attack.

• Run-time monitoring and repair: Specifications and refinements contain rich semantic
information that constrain data representations and computations. Run-time monitors are
generated from such constraints. If an attack causes an application to violate these
constraints, the violation may be detected by the monitors, which initiate corrective action.
The semantic constraints can also be used to generate repair mechanisms that restore
semantic consistency to data that has been compromised by an attack – the repair may be
partial or full, depending on how strong the constraints are and the extent of the damage to
the data.

In addition, the research seeks to understand the role that synthetic diversity can play in cyber 
defense. 

2 INTRODUCTION 

A software application may be subject to various forms of cyber attack. An attack may originate 
from any network to which the application’s host computer/system is connected, either directly 
in the form of malicious inputs sent to the application or indirectly in the form, say, of a denial of 
service attack that deprives the application of needed resources (such as memory, CPU time, 
network bandwidth or services running on remote hosts). 
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Alternatively, an attack may originate from malware running on the application’s host. The 
malware may have been implanted offline (e.g., from a storage device) or it may have been 
injected by a network attacker exploiting a weakness in another application or service. Such co-
resident malware may attack an application by tampering with shared data (e.g., data stored in a 
file system), by consuming excessive resources or by monitoring the application for information 
leaked via side channels (manifest, e.g., in the application’s CPU or network usage patterns). 

Many forms of attack require the attacker to acquire detailed knowledge about the application, 
and then specifically craft the attack according to those details. For example: 
• If an attacker wishes to cause an application to behave in a specific way, then the attacker

may need to know how the application’s data is represented in the file system.
• If an attacker wishes to cause an application to stall, then knowledge about which remote

services the application depends on may allow an attack to be carried out stealthily, by
cutting off access to just those services.

• If an attacker knows that an application uses an algorithm that needs a lot of memory, then
the attacker can more effectively attack the application using a denial of service attack that
depletes the available memory, rather than one that depletes the available computational
power.

• Side channel attacks depend on correlations between visible signals and hidden data or
processes.

To acquire such knowledge, an attacker may need to surveil the application or analyze its code, 
either of which may be time-consuming. 

In this introduction, we give a brief overview of some areas of technology that aim to thwart 
cyber attacks: 
• synthetic diversity, in which many versions of an application are deployed, with the aim of

restricting an attacker’s ability to exploit knowledge learned through surveillance or
analysis;

• run-time monitoring, in which the behavior of an application is checked against
expectations, with the aim of detecting behavior that arises from a compromise;

• run-time repair, in which data redundancy or constraints are used to partially or completely
restore compromised data.

We also give an introduction to the Specware tool, which we use: to specify data structures, 
algorithms and libraries; and to develop software refinements and transformations that are the 
basic tools that we use to implement synthetic diversity, run-time monitoring and run-time 
repair. 

2.1 Synthetic Diversity 
Synthetic diversity is a defensive technique based on causing an application to vary the details of 
how it works or how it represents its data, quickly enough to render unusable any knowledge that 
an attacker might acquire. Synthetic diversity does not seek to make absolute guarantees about 
an application’s defense; rather, it seeks to raise the cost of a successful attack. It is 
complementary to other defense techniques such as virus scanning, intruder detection and code 
shepherding. 
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Prior research on synthetic diversity has typically focused on fine-grained aspects of an 
application’s code. For example: 
• With instruction set randomization [1,2], a virtual processor is created that is essentially the

same as some real processor, but with its op-codes randomly permuted. Valid code is
transformed to reflect the op-code permutation, prior to loading into the virtual processor –
it is thus executed essentially the same as the original code would be on the real processor.
However, if an attacker manages to inject code into an application running on the virtual
processor, the injected code (presumably) uses the original op-codes rather than the
permuted op-codes – the injected code is thus essentially gibberish and its execution by the
virtual processor will likely soon result in a crash (which is considered a better outcome
than the injected code subverting the application).

• With address space randomization [3], the positions of data in memory is not (likely)
predictable by an attacker. An attacker trying to modify some datum does not know its
address; an attacker who succeeds in overwriting a data area (e.g., the stack) with code does
not know the injected code’s address, which makes it harder to cause the processor to begin
executing the injected code.

This research addresses larger-grained aspects of synthetic diversity, such as how data structures 
are represented and which algorithms are used. For example, an application may represent a Set 
(over a bounded enumeration) using either a List (containing each element of the Set) or a Bit 
Vector (with the ith bit 1 iff the ith element of the enumeration is in the Set). If an attacker creates 
an attack that tries to change the Set and expects the former representation, the attack will almost 
certainly fail if the latter representation is in use. 

Likewise, different algorithms may be functionally equivalent but have different resource usage 
patterns. If an attacker knows which algorithm an application uses, the attacker may be able to 
selectively target the particular resources that are critical to that algorithm. For example, a denial 
of service attack on a CPU-intensive algorithm would be different from a denial of service attack 
on a memory-intensive algorithm. 

In addition, certain algorithms have extreme worst-case resource usage. For example, some 
regular expression matching algorithms can consume excessive amounts of CPU time trying to 
process certain regular expressions. If an attacker knows that an application uses such an 
algorithm, the attacker may launch an algorithmic complexity attack, in which specifically 
crafted input triggers the worst-case behavior. 

Moreover, knowing which algorithms are used by an application helps in analyzing side 
channels. 

As a final example, a weakness in an application may be caused by a bug in a routine imported 
by the application from an external library. Knowing which libraries an application uses may 
allow an attacker to deliberately trigger the bug. Varying the libraries makes this more difficult. 

Table 1 shows several granularities of synthetic diversity along with the potential effects they 
have on attacks. This research is primarily focused on diversity of algorithms and data structures, 
with some development of obfuscation techniques. The technologies developed also allow for 
diversity of code libraries and message serialization randomization, but these were not explored. 
The technologies should also be of use in diversifying protocols and architectures, but additional 
technologies or semantic theories may be needed. 
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These different granularities of synthetic diversity are complementary. In particular, since the 
technologies developed in this research generate code in standard programming languages, it 
should be possible to use whatever technologies exist to perform address space and instruction 
set randomization. 

2.2 Run-time Monitoring 
The aim of run-time monitor is to detect when an application is behaving in ways that it should 
not, due to faults in the software or to the actions of an attacker. There are various forms of run-
time monitoring of applications. 
• With permissions-based monitoring [4], an application is designated as being allowed to

perform certain classes of operation or access certain classes of resources. For example, an
“app” on a mobile phone may be granted permission to access the phone’s calendar, but not
its address book. The operating system prevents the app from going outside its permissions.

• With program shepherding [5], the run-time call stack is used to mediate access to resources
and operations. This can be used to make sure that critical routines are invoked only through
expected channels, rather than from, say, injected code.

• With taint tracking [6], data manipulated by an application is tagged as being trusted or
untrusted, say. When trusted data is combined with untrusted data, the result is untrusted; in
other cases, the result has the same status as the input data. Critical operations can be
augmented with guards that apply sanity checks to any inputs that are untrusted (in
particular). Taint tracking can help to prevent attacks such as SQL injection or shell
injection since the injection relies on an attacker’s ability to insert characters that have
special significance to the back-end system (the SQL database or the shell interpreter) –
since the attacker’s data is untrusted, such characters can be eliminated by the guards.

• With code profiling, training data is used to generate statistical profiles of how an
application behaves; e.g., how much CPU time it typically requires or which parts of the file

Table 1 Granularity of synthetic diversity 

Granularity of Synthetic Diversity Effect 
Architecture fundamentally different patterns of 

interaction 
Protocol fundamentally different behaviors 
Algorithm fundamentally different patterns of resource 

use 
Data structure fundamentally different constraints on data; 

fundamentally different organization of data 
Obfuscation techniques source/binary harder to analyze 
Code libraries different underlying flaws & resource use 
Message serialization randomization messages harder to spoof 
Address space randomization attack overwrites wrong locations; 

injected code cannot be invoked 
Instruction set randomization injected code fails due to wrong op codes 
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system it accesses. The profile can be used to restrict the application’s behavior during 
deployment. 

These technologies are useful in inhibiting attacks. One commonality they have, though, is that 
they attempt to characterize an application post hoc, either through analysis, observation or 
manual attribution. 

In contrast, in this research, formal specifications are used to precisely capture the semantics of 
applications, data structures and algorithms; run-time monitors are synthesized from the 
semantics. A simple example is the specification of a function to sort a sequence: the output of 
the function must be sorted (according to some ordering relation) and must be a permutation of 
the input. Various monitors can be synthesized from this specification, exhibiting different trade-
offs between thoroughness and cost: 
• Rigorously checking that the output is a sorted permutation of the input is possible but

perhaps too expensive.
• Checking that the output is sorted can be performed with a linear scan of the output. Instead

of checking that the output is a permutation of the input, a monitor might only check that
they have the same length, say.

• Rather than check that the entire output is sorted, a monitor might only sample various
positions along the Sequence.

• Rather than check every output of the function, a monitor might check only randomly
selected outputs.

In general, if the result, R, must satisfy some constraint p(R), then a monitor may check any 
weakening of p (any necessary constraint); i.e., any q(R) such that p(R) ⇒ q(R). The weakest 
constraint is q(R)=true, which requires no run-time checking at all. 

Of course, any combination of such monitors is also possible – one might be selected at random 
for each invocation of the function. 

Any constraint that involves unbounded quantification cannot be checked at run-time; e.g., a 
constraint over all sequences or over all integers. Bounded quantification may be checkable, if 
the technology can recognize the bounds. 

In this research, a run-time monitor checks that semantic constraints are being observed. 
Violations may arise from several sources: 
• Data obtained from a library routine may not meet its specification, perhaps because of a

bug or because the routine has been compromised by an attack.
• Likewise, data shared with another application or service may be corrupted.
• There may be errors in the generated code. This should be unlikely, but it cannot be

completely ruled out until all parts of the generation process have been rigorously proved (a
requirement that is being pursued in related research).

2.3 Run-time Repair 
Run-time repair of data addresses two problems: when information may be lost because an 
attacker has deleted data; when an application may malfunction because an attacker has 
corrupted data (e.g., the application may crash or hang). In the former case, the objective is to 
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restore the data. In the latter case, the objective is to put the data into a structurally and 
semantically sound state so that the application can continue to operate. 
In addition to well-known methods of repairing data using error-correcting codes or redundant 
data structures, there are also several novel repair technologies being developed: 
• With failure oblivious computing, an operation that is detected to be erroneous is replaced

with a similar, sound operation. For example, an attempt to read a sequence at an index that
is out of bounds might be replaced with a read at any index that is in bounds. There is no
guarantee that such replacements are correct, but they prevent dangerous operations
(particularly when data is being written) and, for some classes of application, appear to
allow the application to continue operating.

• With taint tracking, as discussed above, untrusted data that is found to contain special
elements may be sanitized before being passed to a critical operation. For example, an SQL
query may contain unescaped quote marks that are untrusted – these may be escaped before
the query is processed, preventing injection attacks.

For the research reported here, repairs can be formalized as follows: given a data structure that 
violates its semantic constraints, find a data structure that satisfies its constraints and is as close 
to the original data structure as possible (according to some cost or distance metric). For 
example, consider a sequence of integers that is supposed to be sorted (according to the standard 
less-than order). If the sequence is found to contain some elements that are out of order, several 
repairs are possible: the elements might be moved into their correct positions in the sequence; the 
elements might be removed from the sequence; the elements might be altered to values that are 
in order. 

None of these repairs is guaranteed to be correct, in the sense of restoring a compromised 
sequence back to its original, uncompromised state, unless there is sufficient knowledge about 
how many and what sort of alterations a sequence might be subjected to. 

Nonetheless, in the spirit of “fighting through an attack”, the application is likely to function 
better with the repaired data than with the compromised data – many of the application’s 
operations presumably rely on the sequence being sorted and will misbehave if it is not. For 
example, a search algorithm might be optimized based on the assumption that the sequence is 
sorted. If such an algorithm encounters an out-of-place element, it may prematurely terminate, 
believing it has exhausted that part of the sequence that might contain the sought-after element. 
While the repaired sequence may contain a few incorrect elements, the search operation will be 
able to perform unhindered. 

A repair may even be chosen at random from several possible repairs, in the absence of cost 
metrics. 

Such technologies as error-correcting codes, redundant storage and voting schemes can be 
incorporated into the approach developed in this research. 

2.4 Specware 
Kestrel’s Specware tool provides a high-level language for specifying data structures, algorithms 
and applications, without undue regard to their representation or implementation. It also provides 
meta-programming facilities that allow software to be manipulated (e.g., for many 
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implementations of an application to be generated). In this section, we introduce some of the 
main constructs. 

2.4.1 Specifications and Semantic Constraints 
The research reported here is based on the Specware system [7]. Specware supports the 
specification of software and the automated generation of executable code. Its specification 
language is similar to those in proof systems such as Isabelle/HOL [8] and Coq [9]. It allows data 
types to be defined and semantically constrained. For example, a data type for prime numbers 
may be specified as: 

  type Prime = Int | prime? 
where the notation “type | predicate” indicates some pre-existing type (integer) that is 
constrained to satisfy the given predicate (“prime?”, whose definition is not shown). It is a 
convention in use of Specware to give predicates a name that ends in a question mark, but that is 
not a requirement. 

Such a type can be used to define other types, to constrain inputs to functions or to constrain the 
results of functions. For example, consider the following. 

  op factors(i:Int | i > 1): Sequence Prime 
This declares a function (an “operation” or “op”) called “factors” that takes as input an Integer, i, 
that is greater than 1 and returns a sequence of integers, each of which is prime. 

For each invocation of a function, there is an associated proof obligation that requires that the 
inputs to the function satisfy their constraints – formally, a specification is not known to be valid 
until all of the proof obligations have been discharged. For example, factors(-1) is formally a 
type error in Specware. 

Simple proof obligations can be automatically discharged by Specware. More complicated proof 
obligations may require the use of a theorem prover. For this research, though, the semantic 
constraints in the types are taken as candidates for run-time monitoring. 

In normal development, the result type of a function is something that can be assumed to be true. 
Thus, any element of any sequence returned by a call to factors can be assumed to be prime. 
Such assumptions form part of the knowledge that allows the proof obligations for other function 
invocations to be discharged. 

However, for this research, the semantic constraints in result types are taken as candidates for 
run-time monitoring. 

2.4.2 Refinement and Semantic Constraints 
In addition to declaring the type of a function, Specware allows the semantics of the function to 
be captured. For example, the factors function can be fully characterized by requiring that the 
sequence of primes is sorted and that the product of the primes equals the input to the function: 

  op factors(i:Int | i > 1): SortedSequence Prime = 
    the(S) product(S) = i 

The notation the(x) p(x) denotes the unique value that satisfies the predicate p, so this states that 
the function returns the unique sequence whose product is i. 
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The sortedness of the result is implied by the result type. It could alternatively have been 
incorporated into the the clause: 

  op factors(i:Int | i > 1): Sequence Prime = 
    the(S) sorted?(S) && product(S) = i 

Likewise, the result type implies that each element of the result sequence is prime. 

A function specified using the or existential quantification – ex(x) p(x) – or universal 
quantification – fa(x) p(x) – is not directly executable. The function may have been defined only 
for specification purposes and may never need to be executed. However, if it is to be executed, 
then it must be refined into executable form. For example, a perhaps naïve implementation of 
factors is: 

refine def factors(i:Int | i > 1): SortedSequence Prime = 
  while((2, i, empty), 
    fn (prime, n, factors) → n > 1, 
    fn (prime, n, factors) → 
      if prime = n || prime divides? n 
      then (prime, n/prime, factors <| prime) 
      else (nextPrime(prime), n, factors), 
    fn (prime, n, factors) → factors) 

This definition shows several aspects of Specware’s language: 
• An expression of the form while(initial, continue?, next, final) is a while loop. The

arguments are: an initial value, a function that determines if the loop should continue, a
function that gives the next value, and a function that, once the loop has terminated, gives
the final value. In this example, the loop deals with a value having three components: a
prime number (initially 2), the current value being factored (initially i), and a list of factors
found so far (initially empty).

• An expression of the form fn(x) → e denotes an anonymous function with formal parameter
x and body e.

• The expression S <| e denotes an element e appended to a sequence S.
(Other aspects of the Specware language will be introduced as needed.) 

Because this definition of factors is a refinement of the specification of factors, the definition 
must produce a value that satisfies the specification. i.e., the value returned by this definition 
must be a sorted sequence of primes such that their product equals the argument given to factors. 

As with the semantic constraints implied by types, the semantic constraints implied by 
refinement are required to be discharged before a specification is known to be valid. For this 
research, however, the semantic constraints are taken as candidates for run-time monitoring. 

Note that run-time monitoring cannot, in general, check that there is a unique value satisfying a 
constraint. i.e., given the constraint the(x) p(x), run-time monitoring can check if some value 
satisfies p, but not that it is the only satisfying value. 
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2.4.3 Morphisms 
Refinements can be packaged together to perform a coherent task. For example, a specification 
for Set as an abstract data type might declare the type 

spec Set 
type Set E 

and give signatures (types) and semantics for the usual functions; e.g., the union function may be 
declared as: 

  op [E] \/(S1:Set E, S2:Set E) infixr 24: Set E = 
    the(U) fa(e:E) e in? U <=> (e in? S1 || e in? S2) 

In this case, the function name is \/ and it is declared to be an infix operator (with right 
association and priority 24). The notation [E] introduces a type variable to represent the type of 
the Set’s elements – the Set data type is polymorphic. 
A package of refinements that represents a Set as a List would give a definition for the data type 
representation 

  spec SetAsList 
  type Set E = List E | nonRepeating? 

along with definitions for the functions; e.g., 
op [E] \/(L1:Set E, L2: Set E) infixr 24: Set E = 
      let diff = filter (fn e → e nin? L2) L1 
      in diff ++ L2 

(where the operator nin? tests if an elements is not in a Set and ++ concatenates two Lists). 

We formally connect the abstract Set to the more concrete SetAsList using a morphism: 

  SetAsListM = morphism Set -> SetAsList {} 
This defines a morphism called “SetAsListM” that has the Set specification as its source and the 
SetAsList specification as its target. This morphism can be applied to a specification, with the 
effect of implementing the abstract data type (Set) in terms of a concrete data type (List). For 
example, if SomeServer is a specification for an application that uses the abstract Set data type, 
then SomeServer[SetAsListM] is a refined specification that instead uses the concrete data type 
List. (The braces after the morphism target allow for type or function renamings to be given. In 
this case, they are not needed.) 

Roughly speaking, when used this way, specification/refinement is similar to features such as 
interfaces/implementations in languages such as Java. However, the critical difference is that 
refinements are required to preserve the semantics of the source specification – whatever can be 
proved about the SomeServer specification must also be provable about the refined specification 
SomeServer[SetAsListM]. 

Refinements can be chained together; e.g., SomeServer[SetAsListM][MapAsHashTableM] 
applies SetAsListM and then MapAsHashTableM. Since each refinement preserves the 
semantics of the source specification, their combination also preserves the semantics. 
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2.4.4 Transformations 
In addition to refinement, specifications can be produced by transformation. Examples of 
commonly used transformations include: 
• Unfolding, in which modular definitions are in-lined. The objective is to provide context for

a computation to allow it to be simplified.
• Algebraic simplification, in which such rules as head(cons(x,L)) = x and if true then e else f

= e are used to simplify computations.
• Common sub-expression elimination, in which a significant computation that appears twice

in some expression is bound to a variable so that it is only computed once.
A single transformation typically has a well-defined objective. Complex changes can be 
achieved by chaining transformations. Typically, a transformation is required to preserve the 
semantics of the source specification. 

Specware’s notation for the application of a transformation is similar to its notation for applying 
a refinement: S{T} denotes the application of transformation T to specification S. 
Transformations and refinements can be intermingled: e.g., 

SomeServer[SetAsList][MapAsHashTable]{Simplify}{CommonSubexpressions} 

This notation provides a compact way for denoting how a specific, concrete, optimized 
specification (and after code generation, a specific implementation) can be produced from an 
abstract specification. It thus provides an efficient means for expressing the production of many 
implementations from an original specification. 

2.4.5 Code Generation 
When a specification is as fully concrete as it needs to be (recalling that some functions may not 
be intended to be executable), Specware can generate executable code. For research, the target 
programming language is typically Lisp, but other languages such as C and Java can be targeted. 
This research focused mainly on Lisp. 

3 METHODS, ASSUMPTIONS, AND PROCEDURES 

In this section, we detail our approach to synthetic diversity, run-time monitoring and run-time 
repair. 

For synthetic diversity, our approach starts with high-level specifications of data structures and 
algorithms that are devoid of details concerning representation or implementation. Using such 
high-level specifications, we construct a specification of an application. This specification 
defines what we need of the application, but says little about how the application is to carry out 
its computations. This leaves us free to realize those computations in any manner consistent with 
the specification – i.e., we are free to generate diverse implementations. 

The second part of our approach to synthetic diversity is to develop multiple representations of 
data structures (e.g., a Set can be represented as a List or as a Hash Table) and multiple 
implementations of algorithms (e.g., QuickSort, MergeSort and BubbleSort are all 
implementations of sorting). 
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We then mix and match the representations/implementations to realize the high-level data 
structures and algorithms used in the specification of the application. We use automated tools to 
generate all possible (valid) combinations.  

Some standard transformation techniques can be applied to the resulting code to further increase 
diversity – we consider one such technique as an example. 

We also consider how to measure the diversity of a collection of implementations, and how to 
ensure that we are generating diverse collections. 

For run-time monitoring, our approach starts with the rich semantic information present in 
specifications (data type invariants and function pre- and post-conditions) and in the relationship 
between a high-level specification and a lower-level implementation. We use this semantic 
information to ensure an application behaves correctly, by generating run-time monitors. 

For run-time repair, our approach is based on data type invariants – these are constraints on a 
data structure and when a run-time monitor detects a failure of a constraint, it applies a repair 
operator to restore the constraint. 

We also consider several methods for adding constraints to data structures (e.g., by adding hash 
codes or redundancy). 

3.1 Multiple Data Representations 
For this research, synthetic diversity is focused primarily at the granularity of data structures and 
algorithms. So, we will first show how Specware can be used to allow multiple data 
representations to be used. We will use as a simple example complex numbers, which have two 
common representations: Cartesian, in which the real and imaginary parts are stored; polar, in 
which the radius (magnitude) and argument (angle) are stored. 

3.1.1 Representation-free Specification 
In order to use either, or both, of these representations, we first define a specification, Complex, 
that captures the commonality between the representations. 

Complex = spec 
type Complex 

op real(x: Complex): Real 
op imag(x: Complex): Real 
op rad(x: Complex): NonnegReal 
op arg(x: Complex): Angle 

We declare a type Complex. Since no definition is given, we are not yet committing to any 
specific representation. 

We declare four observer functions on values of type Complex, to obtain the real and imaginary 
parts, and the radius and argument. The latter two are constrained to return, respectively, a real 
number greater than or equal to 0, and an Angle, i.e., a real number in the range 0 (inclusive) to 
2π (exclusive). (In this report, we will gloss over the difference between real numbers and their 
finite representation as floating point values.) 
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While the observers real & imag might be naturally associated with a Cartesian representation, 
and rad & arg with a polar representation, all four observers are compatible with any 
representation for Complex that we choose. 

We next mutually constrain these functions by adding an axiom that states when two complex 
numbers are equal. 

axiom complex_equality is 
  fa(x: Complex, y: Complex) 
            (x = y <=> real x = real y && imag x = imag y)  
  && (x = y <=>  rad x = rad y  &&  arg x = arg y) 

In effect, this axiom states that the functions real and imag form a complete set of observers for 
the Complex type – everything that can be known about a Complex, can be found through these 
functions. Likewise, the functions rad and arg also form a complete set of observers. 

We now introduce functions for constructing values of type Complex. Since real & imag and rad 
& arg both form complete sets of observers, we define a construction function for each. 

op mkCartesian(r: Real, i: Real): Complex = 
  the (x) real x = r && imag x = i 
 
op mkPolar(r: NonnegReal, t: Angle | uniqueZero?(r, t)): Complex = 
  the (x) rad x = r && arg x = t 

The mkCartesian function takes two real values and returns the unique Complex value that has 
the given values as the result of applying the real and imag observers. 

The mkPolar function takes a non-negative real number and an Angle and returns the unique 
Complex value that has the given values as the result of applying the rad and arg observers. This 
function has an additional constraint on its arguments: if the radius is 0, then the argument must 
also be 0: 

op uniqueZero?(r:NonnegReal, t:Angle): Bool = 
  r = zero => t = zero 

Since the argument of a complex number is essentially undefined when the radius is 0, forcing 
the argument to be 0 simplifies some technical details. 

Note that we still have not committed to any particular representation. The two constructors, 
mkCartesian and mkPolar, are well defined regardless of which representation we use. 

At this point of the development, we have two ways to construct any Complex value that we 
need, and two sets of observers for querying any Complex value. We can use these functions to 
develop a comprehensive set of functions for complex arithmetic. For example: 
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op *(x: Complex, y: Complex) infixl 27: Complex = 
  mkCartesian(real x * real y - imag x * imag y, real x * imag y + imag x * real y) 

op /(x: Complex, y: Complex | rad y > zero) infixl 26: Complex = 
  mkPolar(rad x / rad y, Angle.subtract(arg x, arg y)) 

Here, we choose to use the mkCartesian function to define complex multiplication and the 
mkPolar function to define complex division. These choices are a matter of convenience and 
clarity and do not commit us to any particular representation. Note that the Angle.subtract 
function ensures that its result, the difference between two Angles, lies in the interval [0, 2π). 

In this way, we can develop a specification for Complex without committing to any particular 
representation. 

3.1.2 Introducing Representations 
Having developed a representation-free specification, we next develop specifications for 
particular representations. For any representation of Complex, we need to show how the 
observers and constructors relate to the representation. For a Cartesian representation: 

Cartesian = spec 
import Complex 
type Complex = {real: Real, imag: Real} 

def real x = x.real 
def imag x = x.imag 

def rad x = sqrt(sq(real x) + sq(imag x)) 
def arg x = angle(real x, imag x) 

refine def mkCartesian(x, y) = {real = x, imag = y} 
refine def mkPolar(r, t) = mkCartesian(r * cos t, r * sin t) 

end-spec 

This specification defines the type Complex to have two Real fields, called real and imag. The 
real and imag observer functions simply return the values of these fields. The rad and arg 
observers perform some trigonometry calculations to produce the appropriate values based on 
these fields. 

Likewise, the mkCartesian constructor simply records its arguments in the fields, and the 
mkPolar constructor calculates the appropriate values for the fields from its arguments. 

This specification contains all that we need to add to the Complex specification in order to have 
a concrete representation. We formally link the abstract Complex specification with this 
representational specification using a morphism: 

CartesianM = morphism Complex -> Cartesian {} 

Likewise, the minimal specification for the polar representation is: 
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Polar = spec 
import Complex 
type Complex = {rad: NonnegReal, arg: Angle} | uniqueZero?(rad, arg) 

def real x = rad x * cos(arg x) 
def imag x = rad x * sin(arg x) 

def rad x = x.rad 
def arg x = x.arg 

refine def mkCartesian(x, y) = mkPolar(sqrt(sq x + sq y), angle(x,y)) 
refine def mkPolar(r, t) = {rad = r, arg = t} 

This defines a representation for Complex in terms of two fields, one for the radius and one for 
the argument. The fields are constrained by their types and the requirement for a unique zero. 
The rad & arg observers and the mkPolar constructor directly access the fields, while the real & 
imag observers and the mkCartesian constructor perform the appropriate calculations for the 
fields. 

We also have the option of giving alternative definitions of functions defined in the Complex 
specification. For example, we may wish to use the following definition of complex 
multiplication when the polar representation is used: 

refine def *(x: Complex, y: Complex): Complex = 
  mkPolar(rad x * rad y, addAngle(arg x, arg y)) 

This definition is, of course, functionally equivalent to the original definition, but is more 
efficient for the polar representation. For the purposes of synthetic diversity, it is useful to vary 
the function definitions between representations. 

(Strictly speaking, the new definition is not a refinement of the original definition since they are 
functionally equivalent, but the same notation is used in Specware.) 

We also define a morphism for the polar representation: 

PolarM = morphism Complex -> Polar {} 

Having defined the two morphisms, we can choose how to represent complex numbers. Suppose 
we have an application that uses complex numbers: 

App = spec 
import Complex 
… 

Then App[CartesianM] is a refined specification of the application in which complex numbers 
use the Cartesian representation and App[PolarM] is a refined specification in which complex 
numbers use the Polar representation. 

This is the basic mechanism by which we construct implementations of an application diversified 
over data representations. Of course, different representations of a data structure tend to perform 
the operations in different ways – e.g., complex multiplication as performed by the Cartesian 
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representation and the polar representation. Thus, to an extent, diversification over data 
structures also gives a certain degree of diversification over algorithms. More algorithmic 
diversification will be discussed below. 

3.2 Some Common Data Structures 
Complex numbers are a simple data structure. We will next show how the approach to multiple 
representations works with more intricate data structures by considering some common data 
structures. 

3.2.1 Finite Set 
FiniteSet = spec 
type FiniteSet E 
axiom FiniteSet_equality is [E] 
  fa(S1:FiniteSet E, S2:FiniteSet E) S1 = S2 <=> (fa(e:E) e in? S1 <=> e in? S2) 
op [E] in? infixl 20 : E * FiniteSet E -> Bool 
op [E] empty(): FiniteSet E = the(S) fa(e:E) ~(e in? S) 
op [E] |>(e:E, S:FiniteSet E) infixr 25: FiniteSet E = 
  the(S2) fa(e2:E) e2 in? S2 <=> (e2 in? S || e2 = e) 

For finite sets, the primary functions that need to be addressed are: 
• Membership: x in? S tests if the value x is a member of the set S.
• The empty set: empty() returns the unique set (of the given element type) that contains no

elements.
• Insertion: x |> S adds the value x to the set S (if it is not already in S).
• Equality: S1 and S2 are equal iff they contain the same elements.

Given these functions, we can define all the common set functions. For example, set union can 
be defined as: 

op [E] \/(S1:FiniteSet E, S2:FiniteSet E) infixr 24: FiniteSet E = 
  the(U) fa(e:E) e in? U <=> (e in? S1 || e in? S2) 

One function that is perhaps less straightforward to define without referencing a particular 
representation is set fold. A fold operation combines all of the values in a set into a single value 
by the repeated application of some binary function, the folding function – e.g., the sum of a set 
of integers can be obtained by folding with the integer + function. 

The signature of fold is: 

op [E, A] fold(f:A*E->A, init:A, S:FiniteSet E | foldable?(f)): A 

where E is the type of the elements of the set and A is the type of the result. Note that these do 
not have to be the same. For example, to compute the set of words that appear in a set of strings: 

fold(fn (words:Set(String), s:String) -> words \/ wordsIn(s), empty(), strings) 

Here, E is String but A is Set(String). 

The init parameter is the value with which the fold is initialized: 0 for summing, the empty set 
for finding the set of all words. 
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Different representations of a set may apply the folding function to the set’s elements in different 
orders. Since the value returned by fold must not depend on which representation we use, we 
must constrain the folding function to not care about the order, as indicated by the foldable?(f) 
constraint in the signature. 

Requiring the folding function to be associative and commutative would be sufficient, but it is 
too stringent – e.g., it would not allow the example above in which we compute the set of words 
in a set of strings with a fold. A less stringent but still sufficient constraint is: 

op [E, A] foldable?(f:A*E->A): Bool = 
  fa(a:A, e1:E, e2:E) f(f(a, e1), e2) = f(f(a, e2), e1) 

This captures the essential condition that the order in which the elements are processed does not 
affect the overall result. 

We can fully define fold without recourse to a representation, as follows: 

op [E, A] fold(f:A*E->A, init:A, S:FiniteSet E | foldable?(f)): A = 
  the(r:A) 
    (empty?(S) => fold(f, init, S) = init) && 
    (fa(S1:FiniteSet E, e:E) 
       e nin? S1 && (S1 <| e) = S => fold(f, init, S) = f(fold(f, init, S1), e)) 

This is a standard inductive definition with base case the empty set and inductive case a non-
empty set. For the latter case, since we know nothing about how the elements are stored or 
ordered in any representation of a set, we use the form 

e nin? S1 && (S1 <| e) = S 
to pick out any element e of the set. This resembles non-deterministic choice, but it does not in 
fact make the definition non-deterministic because the foldable? constraint ensures that the final 
value of the fold is independent of the order in which elements are chosen. 

3.2.1.1 Representation as a List 

One representation for a set is a non-repeating list in which the order of the elements does not 
matter. The non-repeating aspect is simply captured as a type constraint – the unique? function 
below. The latter aspect, that the order does not matter, is expressed in Specware using a type 
quotient: 

type UnordList E = (List E | unique?)/ equiv? 

The equiv? function is an equivalence relation, in this case on non-repeating lists. It captures the 
notion of when two lists are to be considered the same (for the purpose of representing sets). 

op [E] equiv?(L1:List E, L2:List E): Bool = 
  forall? (fn e -> e in? L2) L1 && 
  forall? (fn e -> e in? L1) L2 

This states that two lists are equivalent iff every element in L1 is also in L2, and vice-versa. 
Thus, [1, 6, 3, 4], [6, 4, 3, 1], [4, 1, 3, 6], … are all considered to be equivalent. 

An element of the quotient type UnordList can thus be considered to be an equivalence class, 
consisting of all (non-repeating) lists that are equivalent. In practical terms, an arbitrary member 
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of the equivalence class is used to represent the class, e.g. the list [1, 6, 3, 4] may represent the 
class of lists L such that equiv?(L, [1, 6, 3, 4]). 

The equality operator has fixed semantics in Specware. When two values of the same quotient 
type are tested for equality, the test is performed via the equivalence relation used to define the 
quotient type.  

In a similar manner, suppose f is a function on a quotient type and v is a value of that type, then 
Specware generates proof obligations that require that f is independent of which representative 
might be used for v. This follows from the requirement that x = y ⇒ f(x) = f(y), since x = x 
regardless of which representative is used on the left and which on the right.  

For example, the size function on sets can clearly be implemented using the length function on 
lists, and the value returned is independent of which list represents a given set (under the 
constraint that the list be non-repeating). 

This is expressed as follows: 

op [E] size(S:UnordList E): Nat = 
  choose[UnordList] (fn L -> length(L)) S 

This can be read as: 
• to compute the size of Set S, 
• let L be any representative of the equivalence class representing the Set (choose[UnordList] 

(fn L -> …) S) 
• and compute length(L). 

The complementary aspect is when a set is computed. A single (non-repeating) list is computed 
as the representative, and then lifted to the equivalence class. For example: 

op [E] empty():UnordList E = 
  quotient[UnordList] [] 

Here, the empty Set is represented by lifting the empty List to the quotient type UnordList. 

A typical pattern for implementing Set operations using UnordList is to get the representatives of 
the Set arguments using the choose operator, perform the appropriate List operations, and if 
necessary, lift the result back to the quotient type using the quotient operator. For example, the 
insert function is implemented as: 

op [E] |>(e:E, S:UnordList E) infixr 25: UnordList E = 
  choose[UnordList] 
   (fn L -> if e in? L then S else quotient[UnordList] (e::L)) 
     S 

We first obtain the representative L. We use the List operator in? to test if the element e is 
already in the list. If so, we return the original Set. Otherwise, we prepend the element to the 
representative and lift the result to the quotient type. 

Note that this preserves the non-repeating constraint. Naturally, the correctness of the 
implementations of many of the Set functions depends on this constraint. An alternative 
representation of Sets as Lists allows repeated occurrences of an element, with an appropriate 
modification to the equivalence relation such that Lists are considered the same regardless of 
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whether they contain 1 or more occurrences of a given value. The implementations of the Set 
functions would need to be modified to take this into account. 

Many of the types used in this research involve quotients. It is a crucial aspect in connecting 
abstract types and representations. 

3.2.1.2 Representation as a Hash Set 

An alternative representation of a FiniteSet is as a HashSet: the elements of the FiniteSet are 
partitioned into n buckets according to the elements’ hash values, so that bucket i contains only 
elements e such that hash(e) mod n = i. This is straightforward to express in Specware: 

op [E] hashed?(L:FinSeq(Bucket E)): Bool = 
  fa(i:Nat) i < length(L) => 
    (fa(x:E) x in? L@i => hash(x) mod length(L) = i) 

type HSBucketList E = FinSeq(Bucket E) | hashed? 

FinSeq is a finite sequence (see Section 3.2.2). Each bucket is itself a set – for simplicity, we 
represent a bucket as an UnordList (Section 3.2.1.1). 

Many FiniteSet operations are straightforward to implement given this representation. For 
example, to test if a FiniteSet is empty, we check if all of the buckets are empty: 

op [E] empty?(H:HSBucketList E): Bool = 
  forall?(H, fn B:Bucket E -> empty?(B)) 

However, one motivation in using a HashSet is to speed up such operations as membership 
testing: to determine if a value e is in a set, we need only check if it is in the appropriate bucket. 
So, to maintain good performance, the number of elements in any bucket should be kept small. 
This can be achieved by making the number of buckets, n, large. However, the larger n is, the 
more memory overhead is incurred; in addition, depending on the representation for finite 
sequence, a larger n may incur higher costs to access buckets (e.g., if the sequence is represented 
as a sequential list). 

Thus, the sequence of buckets should expand and contract to maintain a balance between its own 
length and the sizes of the individual buckets. A simple scheme is to enlarge the sequence once 
the average bucket size surpasses some threshold, and to shrink the sequence once the average 
bucket size falls below some threshold. 

To avoid repeated expansions and contractions as elements are added and removed during some 
computation, the former threshold should be larger than the latter. However, this means that the 
length of the sequence is not a function of the elements in the set; rather, it depends on the 
history of how elements where added and removed. In particular, multiple sequences may 
represent the same set. 

Thus, we must form a quotient type over sequences of buckets, in which two sequences of 
buckets are equivalent iff they contain the same elements (regardless of how they are partitioned 
among the buckets). 
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type HashSet E = (HSBucketList E) / equiv? 

A further consideration in implementing a FiniteSet as a HashSet arises from an optimization. If 
two sequences of buckets are the same length n, and both contain some element e, we know that 
e must be in the same bucket i in both, where i = hash(e) mod n. This allows many set operations 
to be optimized. For example, to form the union of two bucket sequences, each of length n, we 
can pairwise union the corresponding buckets; i.e., bucket i of the result is the union of bucket i 
of the first set and bucket i of the second. Note that the resulting sequence is automatically 
properly partitioned, since bucket i of the result contains only elements e satisfying the constraint 
hash(x) mod n = i. 

3.2.1.3 Comparison of Representations 

In general, we expect the HashSet representation to be more efficient than the UnordList 
representation for computations in which testing for membership dominates (directly or 
indirectly, e.g., in testing if one set is a subset of another). If, however, construction of Sets 
causes the expansion and contraction operations to be invoked often, then the UnordList 
representation may be more efficient. 

An UnordList representation is constrained to be non-repeating. This is a constraint that can be 
monitored at run-time – however, it is quite expensive to check thoroughly. 

Each bucket in a HashSet is an UnordList, and so is individually constrained to be non-repeating. 
Since it contains many fewer elements than the whole set, checking this constraint would not be 
as expensive. 

In addition, each element in a bucket must satisfy the hashing constraint. This can be checked 
element by element, and so is well suited to sampling at run-time. 

It should be noted, however, that hashing must be semantically consistent: if two values are 
semantically equal, they must have the same hash. This means that a value’s hash cannot be 
derived from a non-semantic property such as an address in memory (unless some form of 
interning is performed, which forces semantically equal values to have the same address). 
Depending on how it is implemented, hashing may thus be expensive, although such expenses 
may be offset if the hash can be cached. 

3.2.2 Finite Sequence 
Essentially, a finite sequence of length n is a mapping from whole numbers in the range [0, n) to 
some element type. Thus, there are two primary observers: one to retrieve the length, and another 
to retrieve the ith value. 

FiniteSequence = spec 
type FinSeq E 
op [E] length(S:FinSeq E): Nat 
op [E] @(S:FinSeq E, i:Nat | i < length(S)) infixl 30: E 

The canonical constructor for a finite sequence is tabulate: 
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op [E] tabulate(n:Nat, f:Nat->E): FinSeq E = 
  the(S:FinSeq E) 
    length(S) = n && 
    fa(i) i < length(S) => S@i = f(i) 

Given a length n and a function f, tabulate returns a finite sequence of length n and having 
element i equal to f(i). 

Given these functions, it is straightforward to define two other common constructors (e.g., to 
construct the empty sequence and to insert and element at a given index) and the common 
sequence functions such as applying a given function to each element of a sequence (map), 
combining all of the elements into a single value (folding – an example is summing all of the 
elements), find the indices at which a given value occurs, and extracting a subsequence. 

While we generally consider sequences to be based on random access to the elements and lists to 
be based on sequential access, we do not enforce a strict separation. For convenience, we can 
also define list-like functions for sequences: prepend an element, extract the first element, and 
remove the first element. In addition, we can represent a sequence as a list. 

3.2.2.1 Representation as a List 

The representation of a sequence as a list is straightforward: a sequence of length n is represented 
as a list of length n, and the ith element of the sequence is the ith element of the list. (Note that 
any permutation of the elements would be acceptable.) 

One minor consideration is that many sequence functions deal with indices. For example, a 
folding function may take an element’s index as well as its value as argument. In many cases, 
there is a standard analogous function on lists that takes just the value as an argument. This 
means that we cannot directly use many of the standard list functions. However, it is 
straightforward to provide alternative list functions that do deal with the indices. 

3.2.2.2 Representation as a Tree 

Given a binary tree in which each interior node stores a value, we can associate an implicit index 
with each value: the index for the value in node N is equal to the number of values stored to the 
left of the node (where “left” is defined using the standard prefix ordering). We refer to this as 
implicit indexing. See Figure 1 for an example, in which the indices are indicated beside the 
nodes.  
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The advantages of this representation is that retrieving the value for index i requires only log(i) 
steps, on average, if the tree is balanced, and insertion or removal of nodes automatically causes 
the appropriate adjustments to the indices of nodes to the right. The disadvantage is that the tree 
must be kept approximately balanced, which increases the costs of modifying the tree. 

ImplicitlyIndexedTree = spec 
type Core E = 
  | Nil 
  | Branch {value: E, left: IITree E, right:IITree E} 
type IITree E = {core:Core E, size:Nat, height:Nat} 
  | sizeOK?(core, size) && heightOK?(core, height) 

To represent an implicitly indexed tree, we use a standard algebraic construction for the tree 
itself (with leaf nodes represented by Nil and interior nodes represented by Branch). We also 
cache the size of the tree since this is frequently referenced in indexing, and the height of the tree 
since this is frequently referenced in balancing. We add the semantic constraint that the cached 
size must be equal to the true size of the tree: 

op [E] sizeOK?(core:Core E, size:Nat): Bool = 
  case core of  
  | Nil -> size = 0 
  | Branch {value: E, left: IITree E, right:IITree E} -> size = 1 + left.size + right.size 

Note that we use the cached values of the size for the sub-trees – i.e., only one node is checked 
by any single application of this constraint. An alternative would be to recurse through the tree 
and count the nodes afresh. The former is semantically equivalent to the latter since the former 
applies throughout the tree. However, the former is cheaper to compute and probably better 
suited to runtime monitoring using sampling. 

The cached value of the height of the tree is likewise semantically constrained. 

The exact structure of the tree reflects its history of node additions and removals, and 
concomitant rebalancing – the structure is not a function of the values stored in the nodes. 
Consequently, multiple trees may store the same contents at the same (implicit) indices; i.e., 
multiple trees may represent the same sequence. 

We define two implicitly indexed trees to be equivalent iff they have the same values at the same 

Figure 1 Implicit indexing in a binary tree 
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indices. The representation of a Finite Sequence is then the quotient type of Implicitly Indexed 
Tree over this equivalence relation. 

3.2.2.3 Comparison of Representations 

The list representation of a sequence is expected to be efficient for element insertion and 
removal, especially at the front of the sequence. The tree representation incurs (amortized) 
rebalancing costs for insertion and removal. However, the tree representation should be faster for 
random access to the elements, particularly for large sequences. 

The list representation does not impose any semantic constraints. The tree representation 
imposes semantic constraints on the cached values of the tree’s size and height which can be 
used in runtime monitoring. 

3.2.3 Ordered Set 
When we have a total order for some type, we can take advantage of the order in representing a 
set over the ordered type. For example, a set of integers can be represented by a sequence 
ordered according to the < relation (note that this implies that the list is non-repeating); a binary 
search can be used on the ordered list to determine if it contains some given value. 

Ideally, we would be able to use an ordered set as an optimized representation of a standard set. 
However, this is not quite possible because additional information is required when an ordered 
set is initially constructed, namely the ordering relation. For example, the function to construct 
an empty, standard set takes no arguments, but the function to construct an empty, ordered set 
requires the ordering relation (even though the empty set contains no elements – the ordering 
must be available for subsequent element additions). 

In some languages, a default order might be inferred from the element type. For example, a type 
class in Haskell might identify < as the default order for integers. However, even in such cases, 
the functions available on an ordered set exceed those available for a standard set. For example, 
an ordered set can yield its minimum and maximum elements, the ith element, and ordered folds 
(a fold left or fold right, meaning the elements are processed according to the ordering relation or 
its inverse). Consequently, Ordered Set is treated as a distinct type in this work. 

The core specification of Ordered Set is similar to the specification presented above for a 
standard set, except that there is an additional observer to retrieve the ordering relation from an 
Ordered Set, and operations such as adding an element are constrained to leave the order 
unchanged. 

One problem arises because the order is observable: equality between two ordered sets requires 
them to have equal ordering relations. Since equality of functions (including ordering relations) 
is not executable, equality of ordered sets is not executable. (Though it is well defined as a 
specification construct.) An alternative function to test if two ordered sets contain the same 
elements is easily defined and is executable. 

3.2.3.1 Representation as a Strictly Ordered List 

An Ordered Set can be represented as a strictly ordered list: 
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StrictlyOrderedList = spec 
type StrictlyOrderedList E = {order:StrictOrder E, data:List E} | strictlyOrdered?(data, order) 

where a StrictOrder is a predicate p on E×E that is total (x ≠ y ⇒ p x y ∨ p y x), irreflexive (p x x 

= false) and transitive (p x y ∧ p y z ⇒ p x z) – for example, the integer less-than predicate 

Since there is exactly one strictly ordered list representing any given set, there is no need to form 
a quotient type (unlike for a list representation of a standard set). 

3.2.3.2 Representation as a Strictly Ordered Finite Sequence 

This representation is similar to the representation as a strictly ordered list, except that it uses a 
sequence as the core data structure. The difference between a list and a sequence is somewhat 
vague, but here we consider a list to offer sequential access to its members whereas a sequence 
offers random access. 

3.2.3.3 Representation as a Strictly Ordered Binary Tree 

An Ordered Set can be represented as a binary tree, in which values are stored in interior nodes 
and values to the left are strictly less than values to the right (where "left" and "right" are defined 
according to the standard prefix ordering). See Figure 2 for an example. 

The advantage of this representation is that checking if a value is stored in the tree requires, on 
average, log(size of tree) steps if the tree is balanced. The disadvantage is that the tree must be 
kept approximately balanced, which increases the costs of modifying the tree. 

The specification defines a standard algebraic tree structure in which leaf nodes are presented by 
Nil (and contain no data) and interior nodes are presented by Branch: 

StrictlyOrderedBinaryTree = spec 
type Core E = 
  | Nil 
  | Branch {value: E, left:OContents E, right:OContents E, min:E, max:E} 

In addition to carrying a single value and its sub-trees, an interior node caches its minimum and 
maximum values, since these are frequently referenced by the tree operations. 

Figure 2 Strictly ordered binary tree
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Next, the specification defines a structure to carry the data that is common to interior and leaf 
nodes: 

type Contents E = {core:Core E, order:StrictOrder E, size:Nat, height:Nat } | 
ordered? && sizeOK? && heightOK? && minOK? && maxOK? 

The primary constraint is that the values carried by the nodes be ordered: 

op [E] ordered?(C:Contents E): Bool = 
  case C.core of 
  | Nil -> true 
  | Branch {value: E, left:Contents E, right:Contents E, min:E, max:E} 

-> left ~= Nil => C.order(left.max, value) && 
right ~= Nil => C.order(value, right.min) 

This states that an interior node is ordered iff the value stored in the node is ordered with respect 
to the maximum value of its left sub-tree (if that is not a leaf node), and the minimum value of 
the right sub-tree (if that is not a leaf node). A leaf node is trivially well ordered. 

The tree size, tree height, minimum value and maximum value are cached because these are 
frequently referenced. Each of the cached values is semantically constrained. For example, the 
cached size is constrained to be zero if the tree is a leaf, or with respect to the sizes of the sub-
trees otherwise. 

op [E] sizeOK?(C: Contents E): Bool = 
  case C.core of  
  | Nil -> size = 0 
  | Branch {value: E, left:Contents E, right:Contents E, min:E, max:E} 
-> struct.size = 1 + left.size + right.size 

Note that the constraint references the sub-trees cached sizes – i.e., only one node is checked by 
any single application of this constraint. An alternative would be to recurse through the tree and 
count the nodes afresh. The former is semantically equivalent to the latter since the former 
applies throughout the tree. However, the former is cheaper to compute and probably better 
suited to runtime monitoring using sampling. 

The cached height, minimum and maximum are likewise constrained. 

The exact structure of a tree reflects its history of node additions and removals, and concomitant 
rebalancing – the structure is not a function of the values stored in the nodes. Consequently, 
multiple trees may store the same contents; i.e., multiple trees may represent the same ordered 
set. 

We define two Strictly Ordered Binary Trees to be equivalent iff they store the same values. The 
representation of an Ordered Set is then the quotient type of Strictly Ordered Binary Trees over 
this equivalence relation. 

3.2.3.4 Comparison of Representations 

Many operations can be optimized under the constraint that the elements are ordered, regardless 
of which of the three representations are used: e.g., membership test, subset test, union and 
intersection. 
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If a sequence truly offers random access to its members, then binary search is an efficient way to 
test if a value is stored. 

If a list truly offers only sequential access to its members, then binary search is not an efficient 
way to check if a value is stored, since the first comparison would need to traverse half the list. 
Rather, the test can terminate early once a member is found that does not satisfy the ordering 
relation with respect to the sought value. 

The tree representation allows testing if a value is stored in a logarithmic number of steps. 

All three representations involve some additional cost to maintain the invariants as the set is 
modified, compared with the list representation of a standard set. However, the rebalancing costs 
of the tree representation are likely to be highest. 

All three representations provide semantic constraints that are well suited to sampling at run-
time. 

3.2.4 Finite Map 
A finite map is an association between keys and values, with the keys in a given map being 
unique within that map. We thus characterize a finite map using two functions: to test if a 
particular key has an association in the map; and to retrieve the value associated with such a key. 

FiniteMap = spec 
type FiniteMap(K, V) 
op [K, V] definedAt?(M:FiniteMap(K, V), key:K) infixl 20: Bool 
op [K, V] @(M:FiniteMap(K, V), key:K | M definedAt? key) infixl 30: V 

axiom map_equality is [K, V] 
  fa(M1:FiniteMap(K, V), M2:FiniteMap(K, V)) 
    M1 = M2 <=> 
    (fa(k:K) M1 definedAt? k <=> M2 definedAt? k) && 
    (fa(k:K) M1 definedAt? k => M1@k = M2@k) 

3.2.4.1 Representation as an Association List 

A straightforward representation of a finite map is as a list of key-value pairs, in which the keys 
are unique. 
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UnordAList = spec 
op [K,V] uniqueKeys?(L:List (K*V)): Bool = 
  fa (i:Nat, j:Nat) i<length(L) && j<length(L) => (L@i).1 = (L@j).1 <=> i = j 

op [K,V] equiv?(L1:List (K*V), L2:List (K*V)): Bool = 
  forall? (fn e -> e in? L2) L1 && 
  forall? (fn e -> e in? L1) L2 

type UnordAList(K,V) = (List (K*V) | uniqueKeys?)/ equiv? 

Since the key-value pairs are unordered, we form a quotient type over an equivalence relation 
that tests if two lists have the same contents regardless of order. 

3.2.4.2 Representation as a Hash Map 

An alternative representation partitions the key-value pairs into n buckets such that in bucket 
number i, each key k satisfies hash(k) mod n = i. This representation is similar to the hash set 
representation for finite sets (Section 3.2.1.2), so we will not discuss it further here. 

3.2.4.3 Comparison of Representations 

The pros and cons of the two representations are similar to those for the unordered list and hash 
set representations for finite set (see Section 3.2.1.3). 

3.2.5 Ordered Map 
If an ordering is available for the keys, the representation of a finite map can be optimized. The 
considerations are similar to those for an ordered set (see Section 3.2.3). 

3.3 Generating All Implementations 
As noted in Section 3.1.2, if App is a specification of some application that uses the abstract data 
type T, and if TasR is a morphism that shows how T can be represented using the concrete data 
type R, then App[TasR] is the refined specification that uses the concrete data type instead of the 
abstract data type. Such morphisms can be sequenced to refine multiple abstract data types – e.g., 
App[OrderedSetAsTreeM][FiniteSequenceAsListM]. The refinements are applied in order: i.e., 
first OrderedSet is refined, then FiniteSet. 

When an application uses several abstract data types, the number of possible refinements is large 
– which of course is ideal for synthetic diversity. However, some refinements may introduce an
abstract data type into an application, because the concrete type uses the new abstract type. 
Moreover, each abstract type must be refined if a fully executable version is to be produced. The 
order of refinements is also important: if abstract type T is introduced after T is refined into a 
concrete type, then the newly introduced references to T will not be refined. 

The above considerations mean that it can be tedious to identify all refinements that are required 
and sequence them correctly for all implementations. Consequently, we implemented a simple 
tool to simplify the construction of all implementations: 
• We manually list the abstract types directly used by the application.
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• Knowledge about which abstract type uses which other abstract types is declaratively
encoded in the tool.

• Knowledge about which abstract type refines to which representation is declaratively
encoded in the tool.

• The tool generates all feasible refinement terms.
For example, finite map uses finite set. This is encoded as: 

op FiniteMap:BranchPoint = 
    mkBranchPoint("specs/Library/FiniteMap", "FiniteMap", [FiniteSet]) 

The use of the mkBranchPoint function indicates that there are (multiple) possible refinements 
for this type. The first argument is the path in the file system to the finite map specification. The 
second argument is a label for use in tracing the tools operation. The final argument is a list of 
other types that are needed by FiniteMap. 

HashSet is fully executable (it needs no refinement) but it uses the finite sequence type: 

op HashSet:BranchPoint = 
    mkConcreteBranchPoint("specs/Library/HashSet", "HashSet", [FiniteSequence]) 

The use of the mkConcreteBranchPoint function is what indicates that this type does not require 
refinement. 

The refinements for finite map are encoded as: 

op FiniteMapAsHash:Refinement = 
  mkRefinement(FiniteMap, [HashMap], ["specs/Library/FiniteMapAsHash#M"]) 
op FiniteMapAsList:Refinement = 
  mkRefinement(FiniteMap, [UnorderedAList], ["specs/Library/FiniteMapAsList#M"]) 

The first argument to the mkRefinement function is the type to be refined. The second argument 
is a list of types into which it will be refined (in practice, there was always only one type). The 
final argument is a list of morphisms that will carry out the refinement. 

The encodings are collected into libraries to simplify adding additional knowledge for new 
applications. 
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One way to think about the knowledge encoded is as a dependency graph, part of which is shown 
in Figure 3. Nodes in the graph are data types or algorithms. There are two types of arrows 
between nodes: one indicating refinement, the other indicating use. e.g., OrderedMap refines to 
StrictlyOrderedBinaryATree, but uses OrderedSet. (The tool requires that the graph be acyclic. It 
may be possible to relax this condition, in which case the tool would need to avoid revisiting any 
given node during the construction of any single implementation.) 

Example output of the tool is shown in Table 2. 

Although the discussion refers to types, the tool can also be used to refine algorithms. 

The tool can also apply transformations (such as those that introduce run-time monitoring). 

3.4 Measuring and Increasing Diversity 
There are at least two situations in which we would like to have some measure on the degree of 
diversity in a set of implementations: 

• When we are deploying one of the implementations at a time, but are continually or
periodically changing which implementation – we would like to ensure that the next
implementation to be deployed is sufficiently different from some number of preceding
implementations.

• When we are deploying multiple implementations simultaneously, we would like to ensure
that the deployed implementations are as different from each other as possible.

Figure 3 Dependencies between types 

Thick arrows indicate that the source refines to the target. 
Thin arrows indicate that the source type uses the target type. 
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Table 2 Output of diversity tool 

version_0 = FiniteMapUnitTests#Tests 
[../FiniteMapAsHash#M] 
[../FiniteSetAsHash#M] 
[../HashSet#configureForSeqAsList] 
[../FiniteSequenceAsList#M] 

version_1 = FiniteMapUnitTests#Tests 
[../FiniteMapAsHash#M] 
[../FiniteSetAsHash#M] 
[../HashSet#configureForSeqAsTree] 
[../FiniteSequenceAsTree#M] 

version_2 = FiniteMapUnitTests#Tests 
[../FiniteMapAsHash#M] 
[../FiniteSetAsList#M] 

version_3 = FiniteMapUnitTests#Tests 
[../FiniteMapAsList#M] 
[../FiniteSetAsHash#M] 
[../HashSet#configureForSeqAsList] 
[../FiniteSequenceAsList#M] 

version_4 = FiniteMapUnitTests#Tests 
[../FiniteMapAsList#M] 
[../FiniteSetAsHash#M] 
[../HashSet#configureForSeqAsTree] 
[../FiniteSequenceAsTree#M] 

version_5 = FiniteMapUnitTests#Tests 
[../FiniteMapAsList#M] 
[../FiniteSetAsList#M] 

To these ends, we defined a correlation metric between two implementations of an application, 
as follows: 

• For each pair of refinements, we defined a (symmetric) correlation matrix. For example,
consider the three implementations for an ordered set discussed in Section 3.2.3: list,
sequence and tree. The list and sequence implementations are more similar to each other
than to the tree representation, so the correlation matrix for these might be as shown in
Table 3. (Here, and below, it is convenient to refer to a refinement using the representation
that it introduces, once the abstract data structure is known – e.g., List refers to the
refinement OrderedSetAsList.)

Table 3 Correlation matrix for representations of ordered set 

List Sequence Tree 
List 1.0 0.7 0.2 
Sequence 0.7 1.0 0.2 
Tree 0.2 0.2 1.0 
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• For two or more implementations, we define the correlation as a weighted sum of the
pairwise correlations between their refinements. For example, Table 4 shows five teams of
three implementations of a sorting function. Various sorting algorithms are shown in the
column labeled "Sort". Various implementations are shown for three abstract data structures
(finite sequence, finite set and ordered set). Each of the five teams has a low correlation,
about 0.04. In contrast, any team in which all three implementations are the same would
have a correlation of exactly 1.

3.4.1 Increasing Diversity 
For small sizes, we can generate all possible teams of that size and measure their correlations. 
These measurements are plotted for team size 3 in Figure 4 for sorting and for a second function, 
clustering (see Section 4.5). The horizontal axis shows correlation and the vertical axis shows the 
percentage of teams that have equal or lesser correlation. 

Table 4 Low-correlation teams of implementations of sorting 
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Figure 4 Distributions of correlations for sorting and clustering 

The average correlation for sorting is 0.35 and for clustering it is 0.49. In comparison, the lowest 
correlations are 0.04 and 0.30. Picking teams at random would thus produce quite poor diversity. 
(This occurs in part because a particular algorithm may have many more possible 
implementations than its competitors simply because it uses more data types – random picks 
from among all possible implementations would thus be biased towards choosing this algorithm. 
In the weighting used to calculate the overall correlation of a team, algorithm choices are 
weighted more heavily than data representation choices.) 

Consequently, we implemented a hill-climbing algorithm that, given an initial team, randomly 
modifies the team while keeping its size fixed, retaining the modification if it decreases the 
team's correlation. We found that this algorithm performed well in the test applications we tried. 
For example, its output is shown in Table 5 for sorting – starting with a randomly selected team, 
it rapidly approaches a minimally correlated team. 
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This correlation metric seems well suited to algorithm and data representation diversity. It is not 
clear how to incorporate other forms of diversity, such as diversity generated from obfuscation 
techniques (see below).  

3.5 Obfuscation Techniques for Diversity 
Techniques from the field of code obfuscation can be adapted for synthetic diversity: more 
versions of the code for an application can be generated by applying different combinations of 
techniques at different strengths. The differences between implementations brought about by 
obfuscation techniques may not be as fundamental as with other diversification techniques, but 
they may nonetheless help to raise the costs for an attacker. 

For this work, we developed a transformation to randomly reorder the arguments to functions. 
For example, given the following function 

op solve(a:Int, b:Real, c:Bool): Real 

reordering the arguments may generate the following: 

op solve1(b:Real, c:Bool, a:Int): Real 

Any call to the original solve function (including recursive calls) may be replaced with a call to 
the generated function, with actual arguments permuted appropriately. The likelihood of a 
function being reordered and the likelihood of a call being replaced are parameters of the 
transformation. 

We also did preliminary development of a transformation to reorder record fields – however, this 
transformation is not as fully implemented. It should be straightforward to incorporate other 
obfuscation techniques such as the introduction of opaque predicates and code motion. 

Table 5 Output of hill-climbing algorithm for teams of implementations of sorting 
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3.6 Run-time Monitoring & Repair 

3.6.1 Generating Run-time Monitors 
Specifications and refinements contain semantic constraints that can be used for run-time 
monitoring. The approach that we take here is to augment function entry and exit points with 
code that checks that a function’s arguments and result satisfy their constraints. 

For example, consider the specification below. 

Div2 = spec 
op div2(a:Nat, b:Nat, c:Nat | b + c ~= 0): Nat = 
  a / (b + c) 
end-spec 

The div2 function has the constraint b + c ~= 0. We apply the addSemanticChecks 
transformation to create a new specification that incorporates run-time monitoring: 

Mon = Div2{addSemanticChecks{checkArgs?: true, checkResult?: true, checkRefine?: true}} 

The first two parameters to this transformation, checkArgs? and checkResult?, control the 
checking of function arguments and results against semantic constraints arising from types. The 
third argument, checkRefine?, controls the checking of function results against semantic 
constraints that arise from function refinements – see below. 
The new specification contains a refined version of the div2 function, into which monitoring 
code has been inserted: 

refine def div2 (a: Nat, b: Nat, c: Nat | b + c ~= 0): Nat 
  = let (a, b, c) =  
        SemanticError.checkPredicate( 
          (a, b, c),  
           fn (a0: Int, b0: Int, c0: Int) -> b0 + c0 ~= 0,  
           fn _ -> "Subtype violation on arguments of div2")  
    in  
    a / (b + c) 

The function SemanticError.checkPredicate performs the monitoring. The first argument is a 
value to be checked (a 3-tuple in this case). The second argument is the semantic constraint 
being checked: it is always a function so in this case it is expressed using an anonymous 
function. The third argument provides a label to be displayed if a violation is detected. 

If no violation is detected, then the SemanticError.checkPredicate function returns the checked 
value unchanged, so the let binding has the same effect as: let (a, b, c) = (a, b, c); i.e., it is the 
identity. This structure is used in case the monitor detects a violation and returns a repaired value 
– see Section 3.6.2. 

A similar construct is used for monitoring function results. For example, consider the function to 
return the absolute value of an integer: 
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op abs(a:Int): Nat = 
  if a < 0 then -a else a 

The Nat type is declared to be the non-negative integers. The transformation to add monitoring 
thus introduces a check that the result is non-negative: 

refine def abs (a: Int): Nat 
  = let result = if a < 0 then - a else a in 

  let result = 
        SemanticError.checkPredicate 
          (result, fn (i: Int) -> i >= 0, fn _ -> "Subtype violation on result of abs") 

  in result 

Note that constraints can be stated explicitly, as in the div2 example, or be part of a type 
declaration, as in the abs example. In fact, Specware treats an explicit constraint as a local 
definition of an anonymous type. 

A similar construction is used to check refinement constraints. For example, we can specify and 
give a definition for abs: 

op abs(a:Int): Nat = 
  the(b:Nat) b = a || b = -a 
refine def abs(a) = 
  if a < 0 then -a else a 

The transformation introduces a check that the result of abs satisfies the refinement constraint as 
well as the type constraint: 

refine def abs (a: Int): Nat 
  = let result = if a < 0 then - a else a in 

 let result = 
        SemanticError.checkPredicate 
          (result, 
           fn (result0: Int) -> result0 = a || result0 = - a,  
          fn _ -> "Result does not match spec for abs") 

  in 
  let result = 

        SemanticError.checkPredicate 
          (result, fn (i: Int) -> i >= 0, fn _ -> "Subtype violation on result of abs") 

  in result 

This example also shows how multiple constraints are checked, by sequencing calls to the 
monitor. 

The transformation disregards any constraint that it determines to be non-executable; e.g., any 
constraint that, directly or indirectly, does unbounded quantification or that checks functions for 
equality. 

The SemanticError.checkPredicate function is parameterized to allow it either to output a 
warning when it detects a semantic error, or to generate an error condition (similar to an 
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exception). An application may contain code to handle an error condition; if it does not, then the 
application will terminate. 

The function is also parameterized to allow random sampling of the semantic constraints with a 
constant probability.  

3.6.2 Generating Run-time Repair Mechanisms 
The transformation that generates run-time monitoring code has an optional parameter for a 
repair operator that it applies if the semantic constraint is violated. (We refer to it as an operator 
rather than a function because it may randomly select a repair – thus it may not truly be a 
function of its inputs.) 

For example, a possible repair operator for non-negative integers is: 

fn i:Int -> if random(2) = 0 then –i else 0 

This will randomly return the absolute value or 0. Which repair is the better depends on what we 
know about the types of disruptions that might affect the data. 

3.6.3 Augmenting Data Structures to Enhance Monitoring & Repair 
Some data representations are semantically unconstrained. For example, any pair of real numbers 
may be a valid complex number in the Cartesian representation. To enable run-time monitoring, 
such representations may be augmented with additional data that is derived from their original 
data: the augmented representation is then subject to a semantic constraint in the form of the 
relationship between the original and derived data. 

For example, a field can be added that records a hash-code: 

type CartesianPlusHash = {real:Real, imag:Real, h:Nat | h = Cartesian.hash(real, imag)} 

Formally, the Cartesian and CartesianPlusHash types are isomorphic: they are in one-to-one 
correspondence. This allows a transformation to automatically replace all uses of the Cartesian 
type with the CartesianPlusHash type, with any needed computation of the hash fields 
automatically inserted. 

The addSemanticChecks transformation can then be applied to introduce run-time monitoring 
based on the semantic constraint. Additional data such as this can also be used in repairing 
compromised data representations. 

We developed a transformation to add a hash field to arbitrary structures and apply the 
isomorphic substitution. 

In principle, any derived fields could be used to augment an unconstrained structure. For 
example, we might cache the value of the radius of a complex number: 

type CartesianPlusRad = {real:Real, imag:Real, rad:Real | sqr(rad) = sqr(real) + sqr(imag)} 

It should be possible to develop a transformation that, given a data representation and a list of 
observer functions, generates various augmentations of the representation, or even randomly 
constructed functions over the observers. However, we have not yet done this. 
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3.6.4 Using Multiple Representations Simultaneously 
If there are multiple representations available for some abstract type, then a redundant 
representation can be constructed containing each of the singular representations. For example, a 
dual representation for a complex number contains both a Cartesian and a polar representation: 

type ComplexDual = {c:Cartesian, p:Polar | c = p} 

Such redundant representations are semantically constrained: the singular representations must 
all be (semantically) equal. The multiple representations can thus be used for cross-checking: if 
one representation is compromised, another may not be. A compromised representation can be 
repaired from the other, sound representations. 

Note that equality between the representations is semantic rather than structural: a Cartesian 
representation and a polar representation both contain two real fields, but we cannot determine 
equality simply by comparing the fields of one with the fields of the other. A semantically sound 
equality test can be determined by looking for axioms of the form 

value = constructor(observer1(value), observer2(value), …) 

where each of the observers is defined on the abstract type rather than just on the representation. 
Such axioms tell us how to deconstruct and reconstruct a representation, and tell us that the set of 
observers is complete. Thus, any one set of observers could be used to test for equality. 

For example, the Cartesian and polar specifications contain the following axioms: 

c = mkCartesian(real(c), imag(c)) 
p = mkPolar(rad(p), arg(p)) 

The observers real & imag and the observers rad & arg are all defined on the complex type so we 
can test equality of complex numbers using either real & imag or rad & arg. 

Moreover, to repair a compromised representation, we apply its constructor to values obtained by 
applying its observers to a sound representation. For example, to repair (i.e., reconstruct) a 
Cartesian representation c from a polar representation p: 

c = mkCartesian(real(p), imag(p)) 

And vice-versa: 

p = mkPolar(rad(c), arg(c)) 

When disagreement is detected among the representations, how do we determine which are 
compromised and which are sound? In general, voting schemes can be used. However, if each 
representation is semantically constrained, then we may assume that whichever representations 
violate their constraints are the ones that are compromised. 

For example, a better dual representation for complex numbers uses the CartesianPlusHash 
representation instead of the Cartesian representation, since the former is semantically 
constrained. (The polar representation is semantically constrained.) 

In addition, a computation on the abstract type can be implemented using each of the 
representations, and their results cross-checked. This may detect an error that exists in the code 
that is peculiar to one implementation. (Clearly it is best if the computations are as independent 
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as possible for each representation. This is not required in the approach to multiple 
representations discussed above, but it is possible.) 

For example, the following function computes the complex roots of a quadratic equation: 

op solve(a: Real, b: Real, c: Real | a~=zero): Complex * Complex = 
  let discr: Complex = sqrt(sq b - 4 * a * c) in 
  ( (-b + discr) / (2 * a), (-b - discr) / (2 * a) ) 

The sqrt function returns a complex value, so the addition, subtraction and division in the last 
line involve complex arithmetic. With the dual representation, the whole computation is 
performed using the Cartesian(PlusHash) representation, and again with the polar representation, 
and the results compared. 

For this work, we developed a transformation that, given multiple representations for an abstract 
type, automatically constructs a redundant representation, generates code to cross-check and 
repair, if necessary, the representations, and generates code to perform redundant computations 
and cross-check the results. 

3.6.5 Automatically Rotating Representations 
A variation on the preceding is to automatically generate a 1-of-n representation from n 
representations of an abstract type: at any given time, only one of the representations is present, 
but if a computational error is detected, it is replaced with another representation and the 
computation retried. This may allow a computation to succeed if the error is present only in code 
peculiar to one representation. 

For this work, we developed a transformation that, given multiple representations for an abstract 
type, automatically constructs a rotating representation. 

4 RESULTS AND DISCUSSION 

To evaluate our approach to synthetic diversity: 
• We developed unit tests for each of the common data structures discussed in Section 3.2 and

generated all implementations using combinations of representations. Each implementation
passed the unit tests.

• We developed various sorting algorithms and generated all implementations of each
algorithm using combinations of its supporting data structures. We showed that each
implementation was functionally correct and measured its execution time on various classes
of inputs.

• We developed a simple web application for solving quadratic equations, the roots of which
may be complex. We introduced a sporadic error into the solver and showed that the run-
time monitor could detect the error and switch representations.

• We developed a web application that stores spatial data (i.e., data that is associated with
spatial coordinates) and can answer certain queries, such as returning all data points that lie
within a given region. We used a data structure called a kd-tree to store the data – this
structure has interesting semantic constraints. We added mechanisms to perturb the data and
showed that the run-time monitor could detect compromises and (partially) repair the data.
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• We specified a clustering function and developed two algorithms that use spatial queries.
We compared their outputs.

These are discussed in detail below. 

4.1 Unit Tests 
For each of the common data structures discussed in Section 3.2, we developed unit tests derived 
from the semantic specifications of the data structures' functions, without reference to any 
implementation details. For example, the specification of the set union function is 

op [E] \/(S1:FiniteSet E, S2:FiniteSet E) infixr 24: FiniteSet E = 
  the(U) fa(e:E) e in? U <=> (e in? S1 || e in? S2) 

For element e of the result, there are thus four cases: 
• e is in S1 and in S2;
• e is in S1 but is not in S2;
• e is not in S1 but is in S2;
• e is not in S1 and not in S2.

To test this, we create four distinct lists: 
• I, containing elements that are in both S1 and S2;
• D12, containing elements that are in S1 but not S2;
• D21, containing elements that are in S2 but not S1;
• C, containing elements that are in neither S1 nor S2.

We then construct S1 from the elements in I and D12, and we construct S2 from the elements in I 
and D21. 

We then compute R = S1 \/ S2 and verify that: 
• for each x in I, x is in R;
• for each x in D12, x is in R;
• for each x in D21, x is in R;
• for each x in C, x is not in R;
• for each x in R, x is in I, D12 or D21.

The underlying method is to use operations on lists (which we assume to be correctly 
implemented) to verify operations on sets. 

Having developed the unit tests using just the abstract FiniteSet data structure, we generated 
implementations using the available representations for FiniteSet. We also generated versions 
with run-time monitors (Section 3.6.1). We performed the unit tests for each version – each test 
passed for each representation (after some errors were corrected). 
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We did likewise for the other data structures. The number of versions for each data structure is 
shown in Table 6. 

4.2 Sorting 
Two algorithms may be functionally equivalent but exhibit different performance characteristics, 
and, in particular, different worst case behaviors. Using multiple algorithms leads to performance 
diversity, which makes it more difficult for an attacker to deliberately target an application with a 
denial of service attack. 

As an illustration, we implemented several algorithms for sorting a (non-repeating) sequence. In 
addition to the standard QuickSort, MergeSort and BubbleSort algorithms, we implemented 
some less common algorithms: 

• ExtractionSort: the elements of the input sequence are partitioned into those that are in
order with respect to the next element (if any) and those that are out of order. If there are
none that are out of order, the algorithm returns the original sequence; otherwise, it is
recursively applied to the in-order and out-of-order partitions. We might expect this
algorithm to be efficient if the input sequence is almost sorted.

• RunsSort: the elements of the input sequence are partitioned into subsequences, each of
which is already sorted; these sorted subsequences are merged. We might expect this
algorithm to be efficient if the input sequence is created by concatenating multiple
sequences which are (almost) sorted.

• Since we have a data type for OrderedSet, we can sort a (non-repeating) sequence by
creating an OrderedSet from it and then extracting the elements using OrderedSet’s
iterators.

We created (non-repeating) input sequences of various sizes and types – random, sorted, almost 
sorted (created by perturbing a sorted sequence), inverse sorted and almost inverse sorted – and 
timed the algorithms. The results are shown in Figure 5. 

Aside from confirming that each diversified implementation did in fact correctly sort the input, 
the results show significant changes in relative performance among the algorithms for different 
types of input. For example, QuickSort is generally fast but not when the input is already sorted. 

Table 6 Number of implementations for unit testing 

FiniteMap 12 
FiniteSequence 4 
FiniteSet 6 
OrderedMap 40 
OrderedSet 20 
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4.3 Quadratic Equation Solver 
To demonstrate using dual and 1-of-n representations (Sections 3.6.4 and 3.6.5), we developed a 
web application that computes the roots to a quadratic equation. A quadratic equation  has two 
roots given by 2( 4 ) / 2x b b ac a= − ± − , where the roots may be complex, if the discriminant 

2 4b ac−  is negative. The computation of the roots may be expressed as follows: 

op solve(a: Real, b: Real, c: Real | a~=zero): Complex * Complex = 
  let discr: Complex = sqrt(sq b - 4 * a * c) in 
  ( (-b + discr) / (2 * a), (-b - discr) / (2 * a) ) 

• For simplicity, the parameters of the equation are assumed to be real rather than complex.
• The first parameter, a, is constrained to be non-zero.
• The square root function (sqrt) returns a complex number. Thus, the subsequent addition,

subtraction and divisions also involve complex arithmetic.
The application uses a client-server architecture (see Figure 6): 
• the server contains generated code that computes the roots of quadratic equations;
• the client sends quadratic equations to the server and displays the roots, along with any log

messages from the server.

For expediency, the server code is embedded in a free web server, called Hunchentoot [10], and 
the client is implemented in JavaScript/HTML. The generated code is associated with a URL on 
the web server, with the parameters of a quadratic equation passed using standard HTTP URL 
notation (e.g., http://127.0.0.1/solve?a=1.1&b=7.2&c=-3). 

Figure 5 Performance characteristics of sorting algorithms 
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As discussed above, we can use two representations of complex numbers that are semantically 
constrained, and thus allow for run-time checking: 

• a Cartesian representation in which the x & y coordinates are augmented with a hash-code:
CartesianPlusHash = (real, imag, h | h = hash(real, imag));

• a Polar representation in which the radius is constrained to be non-negative, the angle is
constrained to the range [0, 2π ), and zero is uniquely represented (if the radius is 0, then the
angle must be 0).

For the demonstration, we modified the code that computes the roots so that, at random, it may 
change the discriminant to violate these invariants. When the run-time monitor detects the 
violations, it retries the computations either with the same representation of complex numbers or 
with the alternative representation. These actions are logged and reported to the client for 
display. 

Figure 7 shows the server starting with a Cartesian(PlusHash) representation, solving one 
equation without error, but then encountering an error on the second equation and switching to 
the polar representation. On the ninth equation, another error is encountered and the 
representation switches back to Cartesian. 

4.4 Spatial Queries 
We developed a web application for a demonstration of run-time monitoring using a kd-tree. 
This is a spatial decomposition data structure for sets of data points associated with spatial 
coordinates. The data structure is designed to support fast queries of the forms: which data points 
lie within a given region, or which data point is closest to given coordinates? 

The web application allows: 
• a set of points to be generated in 2-dimensional space;
• a region of the space to be selected, and the points within that space found;
• the underlying kd-Tree data structure to be attacked in various ways;

Hunchentoot
web server

Web Browser
(JavaScript)

File of
equations

Equation query:
http://127.0.0.1/solve?a=1.1&b=7.2&c=-3

Roots of equation
Logs of run-time monitors

Code 
generated 
from specs

Equation Roots

Displays 
equations, roots 
and logs of run-
time monitors

Log

Figure 6 Client-server architecture for quadratic equation solver 
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• the error reports and repairs on the kd-Tree data structure, produced by the run-time
monitors, to be examined.

The user interface runs on a web browser, and communicates with code that we generate for the 
kd-Tree data structure (and run-time monitors) which is integrated with the Hunchentoot web 
server – see Figure 8. The communication is structured using the JSON (JavaScript Object 
Notation) standard, which provides conventions for light-weight serializing and deserializing of 
structured data; modern web browsers provide JSON functionality; a free plug-in provides JSON 
functionality on the server. 

One of the main components of the user interface is the map display. This shows the locations of 
the data points and allows the user to select points by clicking and dragging-out a rectangle. We 

Figure 8 Architecture of kd-tree demonstration 

Figure 7 Quadratic equation solver switching representations 
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implemented the map using an SVG object (Scalable Vector Graphics). With SVG, we add 
geometric shapes and text declaratively, and the SVG object takes care of rendering their 
representations on the HTML page – when a data point is selected, we merely change its style 
and the SVG object efficiently updates the rendering. 

The remaining components of the interface (panels to display the coordinates of the selected 
points and controls for attacking the kd-Tree) were straightforward to implement using standard 
HTML and CSS. The logic of the interface was implemented in JavaScript. 

An important aspect of the user interface is the visualization of the errors detected and repairs 
made by the run-time monitor – these are presented in an intuitive manner. 

Details of the kd-Tree data structure and the demonstration are given in Appendix A. 

4.5 Clustering 
Clustering is a technique for automated data classification: a set of data points is partitioned into 
multiple clusters such that the points within a single cluster are similar (in some sense) and 
points in different clusters are dissimilar. We implemented two clustering algorithms: 
• Centroid clustering, using the k-Means algorithm [12]: each data point is to belong to the

cluster with the nearest mean;
• Density clustering, using the DBSCAN algorithm [13]: clusters are formed so that no point

in a cluster is more than a certain distance from the nearest neighbor in the cluster.
The k-Means algorithm requires the number of clusters (k) to be given in advance, so we 
complement it with a silhouette algorithm [14] that tries to find an optimal k. 

4.5.1 Centroid Clustering: k-Means & Silhouette 
The k-means algorithm takes a set of data points and outputs k partitions, where k is an input 
parameter to the algorithm. k-Means can be thought of as operating on a set of k cluster centers: 
each data point is associated with the nearest center. k-Means operates as follows: 

1. A set of k points is generated as an initial guess at the cluster centers.
2. Each point in the data set is assigned to the cluster center that is closest (with random tie

breaking if it is equidistant to two or more centers).
3. The set of points assigned to each cluster center is taken to be a partition. The mean of

the coordinates of each partition is calculated, giving k new centers. If these new centers
are sufficiently close to the previous centers, the algorithm terminates with the new
centers as its output; otherwise, the algorithm repeats from Step 2 with the new cluster
centers. (In the event that a cluster center has no assigned points, the algorithm may
restart with a new set of centers.)

k-Means only guarantees (approximate) local optimality – for a different set of initial centers, it 
may output a different set of results. 

Step 2 of the algorithm can be optimized using a data structure such as a kd-Tree (see Appendix 
A). The basic insight is that geometric reasoning can sometimes be used to determine that a 
particular center could not be the closest center for any point contained within an entire branch of 
the tree. Thus, Step 2 can be performed as follows: 

i. Start at the top of the tree with the complete set of centers.
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ii. If the number of centers has been reduced to 1, then assign every data point within this
part of the tree to the sole remaining center. This is the main source of the algorithm’s
efficiency.

iii. Otherwise:

a. If we are at a leaf node, iterate through all centers for each data point to find the
closest center.

b. If we are at a branch node, move into each child with only those centers that might be
the closest center for some point contained in that child. Repeat from Step ii.

The filtering of the centers in Step iii.b uses the “blacklisting” algorithm [15]. This involves a 
dominance relation between centers, with respect to a given space S: center c dominates center d 
if-and-only-if c is closer than d to every point in S (where “point” here refers to the set of 
geometrical points in the space rather than the data points). For a given sub-tree, the centers are 
compared pair-wise and if one is dominated by any other, with respect to the space assigned to 
the sub-tree, then it can be eliminated from the set of centers. (The spaces are assigned to the 
sub-trees during construction of the kd-Tree, and are recorded in the kd-Tree.) 

4.5.1.1 Silhouette 

To try to automatically determine a good k for k-Means, we implemented a wrapper algorithm 
based on the silhouette metric. Given a set of clusters of data points, the silhouette of a point 
measures how well that point fits within its assigned cluster, versus the other clusters. The 
average of the silhouettes over the data points is then a measure of how well the data have been 
clustered. Given some lower and upper bounds on the number of clusters, the k-Means wrapper 
iterates through the range and finds some number of clusters with the best metric. 

Per the Wikipedia definition, the silhouette s(i) of data point i is defined as: 

s(i) = [b(i) – a(i)] / max{a(i), b(i)} 
where: 
• a(i) is the dissimilarity of point i with respect to i's assigned cluster;
• b(i) is the lowest of the dissimilarities of point i with respect to the other clusters.

The dissimilarity of a point with respect to a cluster is the average of the distances between that 
point and each (different) point in the cluster. Note that for k-Means, a cluster contains those data 
points for which the cluster’s centroid is closer than any other cluster’s centroid. The 
computation of the silhouette can thus be optimized by replacing the average distance between a 
point and the points in a cluster with the distance between that point and the cluster’s centroid. 

If a point i has been assigned to a suitable cluster, then b(i) in the above term will be large 
compared with a(i) – the point will be closer to the other points in its assigned cluster than to the 
points in the other clusters. Thus s(i) will approach +1. Contrariwise, if the point has been badly 
assigned, then s(i) will approach -1. 

4.5.2 Density Clustering 
Given a set of data points, the DBSCAN algorithm picks a point (e.g., at random), determines if 
there are enough neighbors, and if so, starts a cluster containing that data point. 
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It then considers each of those neighbors as a candidate for addition to the cluster: if the neighbor 
itself has enough neighbors, it is added to the cluster. The cluster is thus expanded by adding 
additional data points that are neighbors of points already in the cluster, so long as those points 
have enough neighbors. 

Once this process completes for a given cluster, it is repeated with the data points that have not 
yet been considered for inclusion in any cluster. 

Points with too few neighbors are not put into any cluster – they are considered noise. 

The clusters formed by DBSCAN may be irregular in shape. DBSCAN may thus be better suited 
to some data sets than k-Means. For example, Figure 9 shows two clusters (plus noise data 
points) formed by DBSCAN. 

4.5.3 Demonstration 
We demonstrated the use of the two clustering algorithms for large-grained diversity; i.e., we 
developed a single specification for a clustering demonstration and then generated different 
implementations by diversifying over k-Means (with Silhouette) and DBSCAN, and over the 
lower level libraries on which these are based (in particular, the spatial decomposition library 
and common data structures). 

In total, 48 implementations were generated from the single specification. Each implementation 
was run on the same set of data. 
• Each implementation of k-Means produced the same clusters. (This required making k-

Means deterministic by providing an algorithm for selecting the initial set of k points it uses 
to form the initial clusters – often, these initial points are selected randomly.) 

• Each implementation of DBSCAN produced the same clusters. 

 

Figure 9 Clusters formed by DBSCAN (source WikiPedia) 
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• The clusters produced by k-Means were not exactly the same as those produced by 
DBSCAN, but they are similar. For example, Figure 10 shows clusters produced by k-
Means and DBSCAN (note that the latter leaves some points unassigned to any cluster). 

For this case, the data set was generated using a mixture of 2-dimensional Gaussians and so both 
k-Means and DBSCAN are well-suited for clustering the data. In other cases, k-Means (in 
particular) or DBSCAN may not be appropriate for the data set, and may produce poor clusters. 

Diversification over these two algorithms is thus qualitatively different from diversification over 
data type representations, for which each variant is required to produce exactly the same output. 
Clustering may be considered a “heuristic” problem, in that even though we can precisely 
specify either centroid clustering or density clustering, it may not be clear which version of 
clustering we should use for a particular application. We cannot even directly compare the 
results produced by the two algorithms since they use different metrics – determination of which 
produces better clusters would have to come from a higher level component that uses the 
clusters. 

Nevertheless, there are still circumstances in which it is useful to diversify over these two 
algorithms. 
• If we know the data comes from a mixture of Gaussians, then either algorithm should 

produce good clusters. They can thus be used as other types of diversification are used – to 
cross-check each other’s results (allowing some tolerance for small differences in the 
clusters) and to reduce an adversary’s ability to learn how an application works. 

• k-Means may be significantly faster than DBSCAN (since it can use spatial reasoning to 
assign a group of data points to a cluster in a single step), particularly if the number of 
clusters can be well estimated, so that the silhouette-based wrapper for k-Means that tries to 
find the optimal number of clusters has a small range to iterate over. However, it will 
produce poor clusters if given non-Gaussian data, in which case DBSCAN might be used as 
a fall-back. 

  
Figure 10 Examples of clusters produced by k-Means (left) and DBSCAN (right) 
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5 CONCLUSIONS 

We investigated the use of semantics-rich specifications and refinements in medium-grained 
synthetic diversity. We showed how an abstract specification style combined with formal 
refinement can be used to generate large numbers of implementations of an application. We 
showed how semantic information in the specifications and refinements can be used to generate 
run-time monitors that check for and partially repair compromised data. 

We developed several demonstration applications: a simple quadratic equation solver, sorting, a 
spatial query server and a clustering algorithm. These illustrate our techniques and technologies 
on moderately complex applications. 
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 RUN-TIME MONITORS FOR KD-TREES Appendix A
Abstract: This demonstration shows the automatic generation of run-time monitors from 
semantic constraints. It is based around a simple web application that shows points on a 2-
dimensional map and allows the user to click-and-drag a rectangular region on the map to select 
points. As the user clicks-and-drags, the web front-end continually sends queries to a server to 
determine which points lie within the selected region. The server uses a spatial decomposition 
data structure to efficiently determine which points are selected. Specifically, the server uses a 
kd-tree, which recursively partitions a k-dimensional space one dimension at a time, until the 
number of points contained in a partition is sufficiently small. (In this demonstration, k is 2.) 
When determining which points lie in a given region, the kd-tree uses the recursive partitioning 
to restrict the query to only those partitions that intersect the region – for a typical query, these 
partitions contain only a small fraction of the points in the whole space. 
The kd-tree data structure has various strong semantic constraints: e.g., when a space is 
partitioned, the resulting "children" must exactly cover the space. These semantic constraints 
can be used to generate monitors that check the constraints at run-time – if a constraint fails, the 
monitor initiates repair actions. To show the monitors in action, the web front-end has an 
"attacker" mode that allows the kd-tree data structure to be corrupted, and a "repair" mode that 
shows the violations found by the monitors and the repairs they produced. 

A.1 Spatial Decomposition using kd-Trees 
A spatial decomposition tree recursively splits a large space that contains many data points into a 
set of sub-spaces that each contains a subset of the points, namely those points that lie in the sub-
space. There are several ways to organize the partitioning. In the particular case of kd-trees, each 
split involves 1 of the k dimensions; successive splits may involve different dimensions. Again, 
there are several ways to choose which dimension to split, and where the split should occur. In 
this demonstration, the largest dimension is split in half. 

For example, Figure 11 shows 19 points in a space that is partitioned 5 times. 

To determine which points lie within some given query region, a simple recursive algorithm is 
used that, at each node in the tree, checks if the region intersects the sub-space covered by the 
node; if not, then the node cannot contain any points that lie in the region and the algorithm does 
not proceed any further into this part of the tree – it returns the empty set (of points). 
Contrariwise, if the sub-space does intersect the region, then the branch may contain points that 
lie in the region, so the algorithm proceeds into both of its children and unions their result sets. 

Eventually, the algorithm reaches a leaf node that contains no child trees. A leaf node contains at 
most n points, where n is some fixed number (here, 5). The algorithm then iterates through the 
points to determine which lie within the query region. 

For typical queries, most of the tree can be quickly pruned off, requiring an in-depth search of 
only a small fraction of the tree, and consequently only a small fraction of the points must be 
individually checked against the region. 
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A.1.1 Semantic Constraints on kd-Trees 
Typically, the nodes in a kd-tree contain minimal information, to optimize the use of memory. 
However, for this demonstration, each node contains additional information to support the run-
time detection and repair of compromised nodes. Specifically, each non-leaf node contains the 
following information: 
• the space covered by the node (recorded as a pair of k-dimensional points which form 

"opposite" corners of the space); 
• the dimension in which the space is split; 
• the coordinate at which the space is split. (In principle, this need not be recorded as it is the 

mid-point of the dimension. However, recording it allows other splitting schemes, such as 
splitting at the median coordinate of the data points.) 

Each leaf node contains the following information: 
• the space covered by the leaf node; 
• the "id" of each point contained in the leaf; 
• the points themselves. 

Based on this information, the following constraints apply: 
• The "lower" (respectively, "upper") child of a node has a space that is exactly the lower 

(resp., upper) part of the node's space, with respect to the recorded splitting dimension and 
coordinate. 

• The set of points contained in a leaf node must have ids that exactly match the set of ids 
recorded in the leaf node. 

 
Figure 11 Example of spatial decomposition 

Example of spatial decomposition – each circle represents a data 
point, each rectangle represents a node of the kd-tree 
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• If a point is contained in a leaf node, the coordinates of the point must lie within the leaf
node's recorded space.

A.1.2 Attacks on kd-Trees 
This demonstration is based on a scenario in which the attacker has gained unauthorized access 
to the contents of the leaf nodes of the kd-tree but not to the interior nodes. This might be 
because the two are stored separately – many queries would need fast access to the interior nodes 
but not to the contents of the leaves, since most of the leaves do not need to be examined in a 
typical query. Thus, the interior nodes might be stored in main memory but the leaves might be 
stored off-line, lazily loaded from disc or a database as needed – they may even be stored on a 
separate computer. 

For example, Figure 12 shows the structure of the kd-tree for the preceding space and points 
(Figure 11). Node A is the root and covers the space (0, 0) to (60, 50). Its "upper" child is B, 
which covers the space (30, 0) to (60, 50); B is a leaf node containing points #1 - #4. The 
"lower" child of A is the interior node C, which covers the space (0, 0) to (30, 50), etc. 

Table 7 shows some of the leaf nodes – the spaces that they cover (in terms of a pair of 
coordinates), and the points that they contain, along with the coordinates of those points 

Table 7 Leaf nodes 

Leaf Lower 
Coordinates 

Upper 
Coordinates 

Points 

B (30, 0) (60, 50) #1 (33, 47) #2 (37, 44) #3 (55, 35) #4 (35, 15) 
D (0, 0) (30, 25) #5 (17, 5) #6 (13, 17) #7 (3, 16) 
F (0, 25) (30, 50) #8 (5, 37) #9 (3, 46) 

… 

Figure 12 Example of kd-tree 
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In line with the above discussion, 4 types of attack are supported in this demonstration: 
• The coordinates of a leaf can be changed. Doing so allows an attacker to effectively "hide" 

the points contained in the leaf, since the search algorithm will prune off the leaf based on 
its coordinates. 

• The coordinates of the points stored in a leaf can be changed. 
• Points can be deleted from a leaf. 
• Spurious points can be added to a leaf. 

(For simplicity, it is assumed that the ids of points are not changed, and any point added by the 
attacker has an id that is distinct from those of the existing points.) 

A.1.3 Repairs Effected by the Run-time Monitors 
The run-time monitors that are generated from the semantic information discussed above are able 
to detect the following problems and effect the following repairs: 
• If a child node's space is not correct with respect to its parent's space, the recorded splitting 

dimension and the recorded splitting coordinate, then the child node's space is reset to a 
proper partition of its parent's space. 

• If the coordinates of a point have been altered to such an extent that they fall outside of the 
space of the leaf node that contains the point, then the point's coordinates are reset to a 
random position within the leaf node's space. 

• When the set of ids of the points currently contained in a leaf node is compared with the 
recorded set of ids the leaf node is supposed to contain, if there are missing points then they 
are regenerated with random coordinates within the leaf node's space. 

• Likewise, if there are extra points, then they are deleted from the leaf node. 
If extra information were recorded, it might be possible to effect more accurate repairs: 
• If the points' data is stored redundantly, then it might be fully recovered. 
• If the mean of the points' positions were recorded, then the random generation of 

coordinates might be tuned to match the recorded mean. Likewise for higher moments. 

A.2 Walkthrough 
The following sections detail how the demonstration works, and show examples of the user 
interface. 

A.2.1 Generate some Points 
When you load the demonstration, the web front end generates some data points in the x-y plane 
and sends them to the server. The server constructs the kd-tree and, for the purposes of this 
demonstration, sends the coordinates of each node (interior and leaf) back to the browser. (In a 
real application, the browser would likely not need the node coordinates.) The browser displays 
the points as discs on the map (Figure 13). 
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The browser also displays the nodes as semi-transparent rectangles – since a parent node 
overlaps its ancestors on the plane, the deeper the tree, the darker the combined shading of the 
rectangles representing the nodes. In turn, the depth of the tree reflects the density of points. 

If you refresh the web page, a new set of points is generated. 

A.2.2 Make a Selection 
Click and drag on the map to draw out a selection region. 
As you drag, the control panel on the right shows the coordinates corresponding with the region, 
and the browser continually sends the coordinates to the server. The server uses the kd-tree to 
efficiently find the points that lie within the selection region and sends them back to the browser, 
which displays them (Figure 14). 

Figure 13 Display of data points, with some selected 
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A.2.3 Become the Attacker 
Using the radio buttons near the top of the control panel, select the attacker role. 
For the attacker role, the control panel displays a table of the leaf nodes that tile the x-y plane 
(Figure 15). 

A.2.4 Edit a Tile 
Select a tile by clicking on a row in the table, or by clicking on the map. 
Select one that contains several data points. 

Click the "edit" link on the row or double click to bring up the tile editor (Figure 16). 

 

Figure 14 Display of the selected data points 

 

 

Figure 15 Display of the leaf nodes 
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The upper part of the editor displays the coordinates of the tile. The lower part displays the 
points contained in the tile along with their coordinates. 

Use the text boxes in the upper part of the editor (labeled "Fake x" and "Fake y"), enter new 
coordinates for the tile. 
(The x-coordinate increases left-to-right on the map; the y-coordinate increases top-to-bottom on 
the map. As you move from one text box to the next (using the tab key or mouse), the tile's new 
location is displayed on the map. When you try to save the edit, the upper-left x-coordinate 
cannot be greater than the lower-right x-coordinate; likewise for the y-coordinate.) 

Save the edit, select another tile/row and open the editor again. 
Using the text boxes in the lower part of the editor, change the coordinates of one of the points. 
As you change the coordinates, the true and fake positions are displayed on the map (in green 
and red, respectively). Choose a new position that lies outside the tile. 

Remove a point by clicking one of the check boxes labeled "Deleted?". 
The point is now displayed in black on the map. When the edit is saved, the point will be 
removed from the server's data. However, the web application will remember the point and 
display it in the tile editor. Subsequently unchecking the "Deleted?" box will cause the point to 
be reinserted back into the server's data. 

Insert a fake point by clicking the "Add Point" button. 
This causes a new point to be inserted into the tile, with random coordinates. It is displayed in 
fuchsia on the map. The point can be subsequently removed by unchecking the "Added?" box. 

Save the edit. 
The map will display the edits (Figure 17) because the attacker role is still selected. 

 

Figure 16 The tile editor 
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A.2.5 Become the User Again 
Using the radio buttons near the top of the control panel, select the user role. 
The map no longer displays the edits to the tiles, since the user would normally have no 
knowledge of them. 

Note that the point that was removed is no longer present, the point that was added is present and 
can be selected, and the point that was moved is displayed at its fake coordinates and will be 
selected if the selection region contains the fake coordinates and intersects the tile containing the 
point. You can toggle between the attacker and user roles to compare. 

(An alternative manifestation of the attack would be that the moved and deleted points continue 
to be shown at their original coordinates, but cannot be selected. It depends on whether we 
consider the user's display to be refreshed before or after the attack takes place.) 

Drag out a selection region on the map covering the tile whose coordinates were edited. 

Figure 17 Map displaying the edits 
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Note that the points in the tile cannot be selected as normal (Figure 18). In order to select them, 
you would need to drag out a region that contains both the true and fake coordinates of the tile. If 
the fake coordinates are far off the map, say (1000000, 1000000) x (1000000, 1000000), then the 
points are effectively hidden from selection. 

A.2.6 Activate the Run-time Monitors 
When the demonstration is loaded, the server loads a version of the code that does not contain 
run-time monitors (so that you can verify the problems caused by the tile edits in the preceding 
section). 

Using the radio button at the top of the control panel, select the version of the code that has the 
run-time monitors (Figure 19). 

This causes the server to load the monitor-enabled version of the code. In this demonstration, the 
data uses the same representation for both versions of the code, and so it does not need to be 
translated when the code version is changed. 

Drag out a selection region that intersects one of the edited tiles. 
Doing so causes the server to receive the selection region's coordinates and start processing the 
kd-tree, looking for nodes that intersect that region. As it processes the tree, the automatically 
generated monitors check the nodes and, when a node is encountered that violates the kd-tree's 
semantic constraints, the monitors initiate repairs to the tree. For this interactive demonstration, 
the entire tree is checked and repaired where necessary so that all of the repairs can be presented 
together; an alternative strategy is to repair only the node whose constraint violation was initially 
encountered. 

The map is updated to reflect the repairs (Figure 20) 

Figure 18 A masked sub-tree 

Figure 19 Selection of the version of code with run-time monitors 
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A.2.7 Examine the Repairs 
The repairs are also displayed in a control panel (Figure 21). 

Select each repair in turn by clicking on its rows in the control panel. 
Each repair is displayed on the map: 
• Figure 22 – the run-time monitor detects a violation of the constraint that a tile's coordinates

be a partitioning of its parent's coordinates. The compromised coordinates are shown in red.
The monitor makes an exact repair (with respect to the parent's coordinates) – the restored
coordinates are shown in green.

• Figure 23 – the run-time monitor detects a violation of the constraint that a point's
coordinates lie within the coordinates of the tile in which the point is stored. The
compromised coordinates are shown in red. The monitor makes an approximate repair by
generating random coordinates within the point's tile. The restored coordinates are shown in

Figure 20 Repairs shown on the map 

Figure 21 Control panel for repairs 

Approved for Public Release; Distribution Unlimited. 
57 



yellow. 
• Figure 24 – the run-time monitor detects that the red point is stored in a tile that does not

have a record of the point's id, in violation of a semantic constraint. The monitor removes
the point.

• Figure 25 – the run-time monitor detects that a tile has a record of an id that does not belong
to any of the points stored in the tile, in violation of a semantic constraint. The monitor
generates a point with the id at random coordinates (shown in yellow) within the tile's
coordinates. This is an approximate repair.

Figure 22 Tile coordinates restored Figure 23 Point restored to a approximate coordinates 

Figure 24 Spurious point removed Figure 25 Deleted point restored 
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List of Symbols, Abbreviations and Acronyms 

CPU central processing unit 
CSS cascading style sheets 
DBSCAN density-based spatial clustering of applications with noise 
HTTP hypertext transfer protocol 
HTML hypertext markup language 
JSON JavaScript object notation 
SQL structured query language 
SVG scalable vector graphics 
URL       uniform resource locato 
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